![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > offval | Structured version Visualization version GIF version |
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
Ref | Expression |
---|---|
offval | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | fnex 7215 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
6 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | fnex 7215 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑊) → 𝐺 ∈ V) | |
8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
9 | 1 | fndmd 6651 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
10 | 5 | fndmd 6651 | . . . . . . 7 ⊢ (𝜑 → dom 𝐺 = 𝐵) |
11 | 9, 10 | ineq12d 4212 | . . . . . 6 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
12 | offval.5 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
13 | 11, 12 | eqtrdi 2788 | . . . . 5 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆) |
14 | 13 | mpteq1d 5242 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
15 | inex1g 5318 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
16 | 12, 15 | eqeltrrid 2838 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ∈ V) |
17 | mptexg 7219 | . . . . 5 ⊢ (𝑆 ∈ V → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
18 | 2, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
19 | 14, 18 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
20 | dmeq 5901 | . . . . . 6 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
21 | dmeq 5901 | . . . . . 6 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
22 | 20, 21 | ineqan12d 4213 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺)) |
23 | fveq1 6887 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
24 | fveq1 6887 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
25 | 23, 24 | oveqan12d 7424 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
26 | 22, 25 | mpteq12dv 5238 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
27 | df-of 7666 | . . . 4 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
28 | 26, 27 | ovmpoga 7558 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
29 | 4, 8, 19, 28 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
30 | 12 | eleq2i 2825 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ 𝑆) |
31 | elin 3963 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
32 | 30, 31 | bitr3i 276 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
33 | offval.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
34 | 33 | adantrr 715 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘𝑥) = 𝐶) |
35 | offval.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
36 | 35 | adantrl 714 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐺‘𝑥) = 𝐷) |
37 | 34, 36 | oveq12d 7423 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝐶𝑅𝐷)) |
38 | 32, 37 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝐶𝑅𝐷)) |
39 | 38 | mpteq2dva 5247 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
40 | 29, 14, 39 | 3eqtrd 2776 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 ↦ cmpt 5230 dom cdm 5675 Fn wfn 6535 ‘cfv 6540 (class class class)co 7405 ∘f cof 7664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 |
This theorem is referenced by: ofval 7677 offn 7679 offval2f 7681 off 7684 ofres 7685 offval2 7686 ofco 7689 offveqb 7691 suppssof1 8180 o1rlimmul 15559 frlmipval 21325 frlmphllem 21326 frlmphl 21327 gsumbagdiaglemOLD 21482 gsumbagdiaglem 21485 evlslem1 21636 mhpmulcl 21683 psrplusgpropd 21749 mat1dimscm 21968 rrxcph 24900 rrxds 24901 mbfadd 25169 mbfsub 25170 mbfmullem2 25233 mbfmul 25235 bddmulibl 25347 dvcmulf 25453 ofrn2 31852 off2 31853 ofresid 31854 islinds5 32468 ellspds 32469 evls1fpws 32634 ply1gsumz 32657 ofcof 33093 plymul02 33545 signsplypnf 33549 signsply0 33550 matunitlindflem1 36472 matunitlindflem2 36473 poimirlem3 36479 poimirlem4 36480 poimirlem16 36492 poimirlem19 36495 poimirlem28 36504 broucube 36510 itg2addnc 36530 ftc1anclem8 36556 evlsvvval 41132 dflinc2 47044 fdivmpt 47179 |
Copyright terms: Public domain | W3C validator |