MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval Structured version   Visualization version   GIF version

Theorem offval 7680
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
offval (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem offval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
2 offval.3 . . . 4 (𝜑𝐴𝑉)
3 fnex 7209 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
41, 2, 3syl2anc 584 . . 3 (𝜑𝐹 ∈ V)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.4 . . . 4 (𝜑𝐵𝑊)
7 fnex 7209 . . . 4 ((𝐺 Fn 𝐵𝐵𝑊) → 𝐺 ∈ V)
85, 6, 7syl2anc 584 . . 3 (𝜑𝐺 ∈ V)
91fndmd 6643 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
105fndmd 6643 . . . . . . 7 (𝜑 → dom 𝐺 = 𝐵)
119, 10ineq12d 4196 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
12 offval.5 . . . . . 6 (𝐴𝐵) = 𝑆
1311, 12eqtrdi 2786 . . . . 5 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆)
1413mpteq1d 5210 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
15 inex1g 5289 . . . . . 6 (𝐴𝑉 → (𝐴𝐵) ∈ V)
1612, 15eqeltrrid 2839 . . . . 5 (𝐴𝑉𝑆 ∈ V)
17 mptexg 7213 . . . . 5 (𝑆 ∈ V → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
182, 16, 173syl 18 . . . 4 (𝜑 → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
1914, 18eqeltrd 2834 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
20 dmeq 5883 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
21 dmeq 5883 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
2220, 21ineqan12d 4197 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺))
23 fveq1 6875 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
24 fveq1 6875 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2523, 24oveqan12d 7424 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
2622, 25mpteq12dv 5207 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
27 df-of 7671 . . . 4 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
2826, 27ovmpoga 7561 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
294, 8, 19, 28syl3anc 1373 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
3012eleq2i 2826 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝑆)
31 elin 3942 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3230, 31bitr3i 277 . . . 4 (𝑥𝑆 ↔ (𝑥𝐴𝑥𝐵))
33 offval.6 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
3433adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → (𝐹𝑥) = 𝐶)
35 offval.7 . . . . . 6 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
3635adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → (𝐺𝑥) = 𝐷)
3734, 36oveq12d 7423 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝐶𝑅𝐷))
3832, 37sylan2b 594 . . 3 ((𝜑𝑥𝑆) → ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝐶𝑅𝐷))
3938mpteq2dva 5214 . 2 (𝜑 → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
4029, 14, 393eqtrd 2774 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  cmpt 5201  dom cdm 5654   Fn wfn 6526  cfv 6531  (class class class)co 7405  f cof 7669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671
This theorem is referenced by:  ofval  7682  offn  7684  offval2f  7686  off  7689  ofres  7690  offval2  7691  coof  7695  ofco  7696  offveqb  7698  suppssof1  8198  o1rlimmul  15635  frlmipval  21739  frlmphllem  21740  frlmphl  21741  gsumbagdiaglem  21890  psrascl  21939  evlslem1  22040  mhpmulcl  22087  psdmplcl  22100  psdadd  22101  psdmul  22104  psrplusgpropd  22171  evls1fpws  22307  mat1dimscm  22413  rrxcph  25344  rrxds  25345  mbfadd  25614  mbfsub  25615  mbfmullem2  25677  mbfmul  25679  bddmulibl  25792  dvcmulf  25900  ofrn2  32618  off2  32619  ofresid  32620  islinds5  33382  ellspds  33383  ply1gsumz  33608  ofcof  34138  plymul02  34578  signsplypnf  34582  signsply0  34583  matunitlindflem1  37640  matunitlindflem2  37641  poimirlem3  37647  poimirlem4  37648  poimirlem16  37660  poimirlem19  37663  poimirlem28  37672  broucube  37678  itg2addnc  37698  ftc1anclem8  37724  evlsvvval  42586  dflinc2  48386  fdivmpt  48520
  Copyright terms: Public domain W3C validator