MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval Structured version   Visualization version   GIF version

Theorem offval 7631
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1 (𝜑𝐹 Fn 𝐴)
offval.2 (𝜑𝐺 Fn 𝐵)
offval.3 (𝜑𝐴𝑉)
offval.4 (𝜑𝐵𝑊)
offval.5 (𝐴𝐵) = 𝑆
offval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
offval.7 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
Assertion
Ref Expression
offval (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑆   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem offval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
2 offval.3 . . . 4 (𝜑𝐴𝑉)
3 fnex 7172 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
41, 2, 3syl2anc 585 . . 3 (𝜑𝐹 ∈ V)
5 offval.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 offval.4 . . . 4 (𝜑𝐵𝑊)
7 fnex 7172 . . . 4 ((𝐺 Fn 𝐵𝐵𝑊) → 𝐺 ∈ V)
85, 6, 7syl2anc 585 . . 3 (𝜑𝐺 ∈ V)
91fndmd 6612 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
105fndmd 6612 . . . . . . 7 (𝜑 → dom 𝐺 = 𝐵)
119, 10ineq12d 4178 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
12 offval.5 . . . . . 6 (𝐴𝐵) = 𝑆
1311, 12eqtrdi 2793 . . . . 5 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆)
1413mpteq1d 5205 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
15 inex1g 5281 . . . . . 6 (𝐴𝑉 → (𝐴𝐵) ∈ V)
1612, 15eqeltrrid 2843 . . . . 5 (𝐴𝑉𝑆 ∈ V)
17 mptexg 7176 . . . . 5 (𝑆 ∈ V → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
182, 16, 173syl 18 . . . 4 (𝜑 → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
1914, 18eqeltrd 2838 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
20 dmeq 5864 . . . . . 6 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
21 dmeq 5864 . . . . . 6 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
2220, 21ineqan12d 4179 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺))
23 fveq1 6846 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
24 fveq1 6846 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2523, 24oveqan12d 7381 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
2622, 25mpteq12dv 5201 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
27 df-of 7622 . . . 4 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
2826, 27ovmpoga 7514 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V) → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
294, 8, 19, 28syl3anc 1372 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
3012eleq2i 2830 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝑆)
31 elin 3931 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3230, 31bitr3i 277 . . . 4 (𝑥𝑆 ↔ (𝑥𝐴𝑥𝐵))
33 offval.6 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐶)
3433adantrr 716 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → (𝐹𝑥) = 𝐶)
35 offval.7 . . . . . 6 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐷)
3635adantrl 715 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → (𝐺𝑥) = 𝐷)
3734, 36oveq12d 7380 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑥𝐵)) → ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝐶𝑅𝐷))
3832, 37sylan2b 595 . . 3 ((𝜑𝑥𝑆) → ((𝐹𝑥)𝑅(𝐺𝑥)) = (𝐶𝑅𝐷))
3938mpteq2dva 5210 . 2 (𝜑 → (𝑥𝑆 ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
4029, 14, 393eqtrd 2781 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝑆 ↦ (𝐶𝑅𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3448  cin 3914  cmpt 5193  dom cdm 5638   Fn wfn 6496  cfv 6501  (class class class)co 7362  f cof 7620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622
This theorem is referenced by:  ofval  7633  offn  7635  offval2f  7637  off  7640  ofres  7641  offval2  7642  ofco  7645  offveqb  7647  suppssof1  8135  o1rlimmul  15508  frlmipval  21201  frlmphllem  21202  frlmphl  21203  gsumbagdiaglemOLD  21356  gsumbagdiaglem  21359  evlslem1  21508  mhpmulcl  21555  psrplusgpropd  21623  mat1dimscm  21840  rrxcph  24772  rrxds  24773  mbfadd  25041  mbfsub  25042  mbfmullem2  25105  mbfmul  25107  bddmulibl  25219  dvcmulf  25325  ofrn2  31598  off2  31599  ofresid  31600  islinds5  32196  ellspds  32197  evls1fpws  32311  ofcof  32746  plymul02  33198  signsplypnf  33202  signsply0  33203  matunitlindflem1  36103  matunitlindflem2  36104  poimirlem3  36110  poimirlem4  36111  poimirlem16  36123  poimirlem19  36126  poimirlem28  36135  broucube  36141  itg2addnc  36161  ftc1anclem8  36187  evlsbagval  40777  mhphf  40800  dflinc2  46565  fdivmpt  46700
  Copyright terms: Public domain W3C validator