| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offval | Structured version Visualization version GIF version | ||
| Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
| offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
| Ref | Expression |
|---|---|
| offval | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | fnex 7151 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 6 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | fnex 7151 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑊) → 𝐺 ∈ V) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 9 | 1 | fndmd 6586 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 10 | 5 | fndmd 6586 | . . . . . . 7 ⊢ (𝜑 → dom 𝐺 = 𝐵) |
| 11 | 9, 10 | ineq12d 4171 | . . . . . 6 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
| 12 | offval.5 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 13 | 11, 12 | eqtrdi 2782 | . . . . 5 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆) |
| 14 | 13 | mpteq1d 5181 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 15 | inex1g 5257 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
| 16 | 12, 15 | eqeltrrid 2836 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ∈ V) |
| 17 | mptexg 7155 | . . . . 5 ⊢ (𝑆 ∈ V → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
| 18 | 2, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 19 | 14, 18 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 20 | dmeq 5843 | . . . . . 6 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
| 21 | dmeq 5843 | . . . . . 6 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
| 22 | 20, 21 | ineqan12d 4172 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺)) |
| 23 | fveq1 6821 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 24 | fveq1 6821 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
| 25 | 23, 24 | oveqan12d 7365 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 26 | 22, 25 | mpteq12dv 5178 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 27 | df-of 7610 | . . . 4 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 28 | 26, 27 | ovmpoga 7500 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 29 | 4, 8, 19, 28 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 30 | 12 | eleq2i 2823 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ 𝑆) |
| 31 | elin 3918 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 32 | 30, 31 | bitr3i 277 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 33 | offval.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
| 34 | 33 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘𝑥) = 𝐶) |
| 35 | offval.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
| 36 | 35 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐺‘𝑥) = 𝐷) |
| 37 | 34, 36 | oveq12d 7364 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝐶𝑅𝐷)) |
| 38 | 32, 37 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝐶𝑅𝐷)) |
| 39 | 38 | mpteq2dva 5184 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| 40 | 29, 14, 39 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ↦ cmpt 5172 dom cdm 5616 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 |
| This theorem is referenced by: ofval 7621 offn 7623 offval2f 7625 off 7628 ofres 7629 offval2 7630 coof 7634 ofco 7635 offveqb 7637 suppssof1 8129 o1rlimmul 15523 frlmipval 21714 frlmphllem 21715 frlmphl 21716 gsumbagdiaglem 21865 psrascl 21914 evlslem1 22015 mhpmulcl 22062 psdmplcl 22075 psdadd 22076 psdmul 22079 psrplusgpropd 22146 evls1fpws 22282 mat1dimscm 22388 rrxcph 25317 rrxds 25318 mbfadd 25587 mbfsub 25588 mbfmullem2 25650 mbfmul 25652 bddmulibl 25765 dvcmulf 25873 ofrn2 32617 off2 32618 ofresid 32619 islinds5 33327 ellspds 33328 ply1gsumz 33554 extdgfialglem2 33701 ofcof 34115 plymul02 34554 signsplypnf 34558 signsply0 34559 matunitlindflem1 37655 matunitlindflem2 37656 poimirlem3 37662 poimirlem4 37663 poimirlem16 37675 poimirlem19 37678 poimirlem28 37687 broucube 37693 itg2addnc 37713 ftc1anclem8 37739 evlsvvval 42595 dflinc2 48441 fdivmpt 48571 |
| Copyright terms: Public domain | W3C validator |