| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offval | Structured version Visualization version GIF version | ||
| Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
| offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
| Ref | Expression |
|---|---|
| offval | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | fnex 7157 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 6 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | fnex 7157 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑊) → 𝐺 ∈ V) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 9 | 1 | fndmd 6591 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 10 | 5 | fndmd 6591 | . . . . . . 7 ⊢ (𝜑 → dom 𝐺 = 𝐵) |
| 11 | 9, 10 | ineq12d 4170 | . . . . . 6 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
| 12 | offval.5 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 13 | 11, 12 | eqtrdi 2784 | . . . . 5 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆) |
| 14 | 13 | mpteq1d 5183 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 15 | inex1g 5259 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
| 16 | 12, 15 | eqeltrrid 2838 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ∈ V) |
| 17 | mptexg 7161 | . . . . 5 ⊢ (𝑆 ∈ V → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
| 18 | 2, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 19 | 14, 18 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 20 | dmeq 5847 | . . . . . 6 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
| 21 | dmeq 5847 | . . . . . 6 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
| 22 | 20, 21 | ineqan12d 4171 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺)) |
| 23 | fveq1 6827 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 24 | fveq1 6827 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
| 25 | 23, 24 | oveqan12d 7371 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 26 | 22, 25 | mpteq12dv 5180 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 27 | df-of 7616 | . . . 4 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 28 | 26, 27 | ovmpoga 7506 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 29 | 4, 8, 19, 28 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 30 | 12 | eleq2i 2825 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ 𝑆) |
| 31 | elin 3914 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 32 | 30, 31 | bitr3i 277 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 33 | offval.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
| 34 | 33 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘𝑥) = 𝐶) |
| 35 | offval.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
| 36 | 35 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐺‘𝑥) = 𝐷) |
| 37 | 34, 36 | oveq12d 7370 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝐶𝑅𝐷)) |
| 38 | 32, 37 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝐶𝑅𝐷)) |
| 39 | 38 | mpteq2dva 5186 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| 40 | 29, 14, 39 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ↦ cmpt 5174 dom cdm 5619 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 |
| This theorem is referenced by: ofval 7627 offn 7629 offval2f 7631 off 7634 ofres 7635 offval2 7636 coof 7640 ofco 7641 offveqb 7643 suppssof1 8135 o1rlimmul 15528 frlmipval 21718 frlmphllem 21719 frlmphl 21720 gsumbagdiaglem 21869 psrascl 21917 evlslem1 22018 mhpmulcl 22065 psdmplcl 22078 psdadd 22079 psdmul 22082 psrplusgpropd 22149 evls1fpws 22285 mat1dimscm 22391 rrxcph 25320 rrxds 25321 mbfadd 25590 mbfsub 25591 mbfmullem2 25653 mbfmul 25655 bddmulibl 25768 dvcmulf 25876 ofrn2 32624 off2 32625 ofresid 32626 islinds5 33339 ellspds 33340 ply1gsumz 33566 extdgfialglem2 33727 ofcof 34141 plymul02 34580 signsplypnf 34584 signsply0 34585 matunitlindflem1 37676 matunitlindflem2 37677 poimirlem3 37683 poimirlem4 37684 poimirlem16 37696 poimirlem19 37699 poimirlem28 37708 broucube 37714 itg2addnc 37734 ftc1anclem8 37760 evlsvvval 42681 dflinc2 48535 fdivmpt 48665 |
| Copyright terms: Public domain | W3C validator |