| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offval | Structured version Visualization version GIF version | ||
| Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offval.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offval.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offval.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| offval.5 | ⊢ (𝐴 ∩ 𝐵) = 𝑆 |
| offval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
| offval.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
| Ref | Expression |
|---|---|
| offval | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offval.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | fnex 7209 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 5 | offval.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 6 | offval.4 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | fnex 7209 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑊) → 𝐺 ∈ V) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 9 | 1 | fndmd 6643 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 10 | 5 | fndmd 6643 | . . . . . . 7 ⊢ (𝜑 → dom 𝐺 = 𝐵) |
| 11 | 9, 10 | ineq12d 4196 | . . . . . 6 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
| 12 | offval.5 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) = 𝑆 | |
| 13 | 11, 12 | eqtrdi 2786 | . . . . 5 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆) |
| 14 | 13 | mpteq1d 5210 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 15 | inex1g 5289 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | |
| 16 | 12, 15 | eqeltrrid 2839 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ∈ V) |
| 17 | mptexg 7213 | . . . . 5 ⊢ (𝑆 ∈ V → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
| 18 | 2, 16, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 19 | 14, 18 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 20 | dmeq 5883 | . . . . . 6 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
| 21 | dmeq 5883 | . . . . . 6 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
| 22 | 20, 21 | ineqan12d 4197 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺)) |
| 23 | fveq1 6875 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 24 | fveq1 6875 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
| 25 | 23, 24 | oveqan12d 7424 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 26 | 22, 25 | mpteq12dv 5207 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 27 | df-of 7671 | . . . 4 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 28 | 26, 27 | ovmpoga 7561 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 29 | 4, 8, 19, 28 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 30 | 12 | eleq2i 2826 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ 𝑥 ∈ 𝑆) |
| 31 | elin 3942 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 32 | 30, 31 | bitr3i 277 | . . . 4 ⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 33 | offval.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) | |
| 34 | 33 | adantrr 717 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘𝑥) = 𝐶) |
| 35 | offval.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) | |
| 36 | 35 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝐺‘𝑥) = 𝐷) |
| 37 | 34, 36 | oveq12d 7423 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝐶𝑅𝐷)) |
| 38 | 32, 37 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥)) = (𝐶𝑅𝐷)) |
| 39 | 38 | mpteq2dva 5214 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑆 ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| 40 | 29, 14, 39 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝑆 ↦ (𝐶𝑅𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ↦ cmpt 5201 dom cdm 5654 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 |
| This theorem is referenced by: ofval 7682 offn 7684 offval2f 7686 off 7689 ofres 7690 offval2 7691 coof 7695 ofco 7696 offveqb 7698 suppssof1 8198 o1rlimmul 15635 frlmipval 21739 frlmphllem 21740 frlmphl 21741 gsumbagdiaglem 21890 psrascl 21939 evlslem1 22040 mhpmulcl 22087 psdmplcl 22100 psdadd 22101 psdmul 22104 psrplusgpropd 22171 evls1fpws 22307 mat1dimscm 22413 rrxcph 25344 rrxds 25345 mbfadd 25614 mbfsub 25615 mbfmullem2 25677 mbfmul 25679 bddmulibl 25792 dvcmulf 25900 ofrn2 32618 off2 32619 ofresid 32620 islinds5 33382 ellspds 33383 ply1gsumz 33608 ofcof 34138 plymul02 34578 signsplypnf 34582 signsply0 34583 matunitlindflem1 37640 matunitlindflem2 37641 poimirlem3 37647 poimirlem4 37648 poimirlem16 37660 poimirlem19 37663 poimirlem28 37672 broucube 37678 itg2addnc 37698 ftc1anclem8 37724 evlsvvval 42586 dflinc2 48386 fdivmpt 48520 |
| Copyright terms: Public domain | W3C validator |