MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofexg Structured version   Visualization version   GIF version

Theorem ofexg 7135
Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.)
Assertion
Ref Expression
ofexg (𝐴𝑉 → ( ∘𝑓 𝑅𝐴) ∈ V)

Proof of Theorem ofexg
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 7131 . . 3 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
21mpt2fun 6996 . 2 Fun ∘𝑓 𝑅
3 resfunexg 6708 . 2 ((Fun ∘𝑓 𝑅𝐴𝑉) → ( ∘𝑓 𝑅𝐴) ∈ V)
42, 3mpan 682 1 (𝐴𝑉 → ( ∘𝑓 𝑅𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  Vcvv 3385  cin 3768  cmpt 4922  dom cdm 5312  cres 5314  Fun wfun 6095  cfv 6101  (class class class)co 6878  𝑓 cof 7129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-oprab 6882  df-mpt2 6883  df-of 7131
This theorem is referenced by:  ofmresex  7398  psrplusg  19704  dchrplusg  25324
  Copyright terms: Public domain W3C validator