MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofexg Structured version   Visualization version   GIF version

Theorem ofexg 7702
Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.)
Assertion
Ref Expression
ofexg (𝐴𝑉 → ( ∘f 𝑅𝐴) ∈ V)

Proof of Theorem ofexg
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 7697 . . 3 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
21mpofun 7557 . 2 Fun ∘f 𝑅
3 resfunexg 7235 . 2 ((Fun ∘f 𝑅𝐴𝑉) → ( ∘f 𝑅𝐴) ∈ V)
42, 3mpan 690 1 (𝐴𝑉 → ( ∘f 𝑅𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3480  cin 3950  cmpt 5225  dom cdm 5685  cres 5687  Fun wfun 6555  cfv 6561  (class class class)co 7431  f cof 7695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-oprab 7435  df-mpo 7436  df-of 7697
This theorem is referenced by:  ofmresex  8010  psrplusg  21956  dchrplusg  27291
  Copyright terms: Public domain W3C validator