![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofexg | Structured version Visualization version GIF version |
Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofexg | ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 7272 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
2 | 1 | mpofun 7137 | . 2 ⊢ Fun ∘𝑓 𝑅 |
3 | resfunexg 6849 | . 2 ⊢ ((Fun ∘𝑓 𝑅 ∧ 𝐴 ∈ 𝑉) → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) | |
4 | 2, 3 | mpan 686 | 1 ⊢ (𝐴 ∈ 𝑉 → ( ∘𝑓 𝑅 ↾ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2081 Vcvv 3437 ∩ cin 3862 ↦ cmpt 5045 dom cdm 5448 ↾ cres 5450 Fun wfun 6224 ‘cfv 6230 (class class class)co 7021 ∘𝑓 cof 7270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-id 5353 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-oprab 7025 df-mpo 7026 df-of 7272 |
This theorem is referenced by: ofmresex 7547 psrplusg 19854 dchrplusg 25510 |
Copyright terms: Public domain | W3C validator |