Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofexg | Structured version Visualization version GIF version |
Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofexg | ⊢ (𝐴 ∈ 𝑉 → ( ∘f 𝑅 ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 7533 | . . 3 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
2 | 1 | mpofun 7398 | . 2 ⊢ Fun ∘f 𝑅 |
3 | resfunexg 7091 | . 2 ⊢ ((Fun ∘f 𝑅 ∧ 𝐴 ∈ 𝑉) → ( ∘f 𝑅 ↾ 𝐴) ∈ V) | |
4 | 2, 3 | mpan 687 | 1 ⊢ (𝐴 ∈ 𝑉 → ( ∘f 𝑅 ↾ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ↦ cmpt 5157 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-oprab 7279 df-mpo 7280 df-of 7533 |
This theorem is referenced by: ofmresex 7828 psrplusg 21150 dchrplusg 26395 |
Copyright terms: Public domain | W3C validator |