Step | Hyp | Ref
| Expression |
1 | | eqid 2725 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | eqid 2725 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
3 | | psdmul.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CRing) |
4 | 3 | crngringd 20198 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
5 | 4 | ringcmnd 20232 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | 5 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd) |
7 | | simpr 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
8 | | psdmul.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
9 | | eqid 2725 |
. . . . . . . . . . 11
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
10 | 9 | psrbagsn 22029 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
11 | 8, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
12 | 11 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
13 | 9 | psrbagaddcl 21878 |
. . . . . . . 8
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
14 | 7, 12, 13 | syl2anc 582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
15 | 9 | psrbaglefi 21882 |
. . . . . . 7
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin) |
16 | 14, 15 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin) |
17 | | eqid 2725 |
. . . . . . 7
⊢
(.g‘𝑅) = (.g‘𝑅) |
18 | 3 | crnggrpd 20199 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Grp) |
19 | 18 | grpmndd 18911 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
20 | 19 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Mnd) |
21 | 9 | psrbagf 21868 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0) |
22 | 21 | adantl 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
23 | | psdmul.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
24 | 23 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
25 | 22, 24 | ffvelcdmd 7094 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈
ℕ0) |
26 | | peano2nn0 12545 |
. . . . . . . . 9
⊢ ((𝑑‘𝑋) ∈ ℕ0 → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
28 | 27 | adantr 479 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
29 | | eqid 2725 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
30 | 4 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Ring) |
31 | | psdmul.s |
. . . . . . . . . . 11
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
32 | | psdmul.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑆) |
33 | | psdmul.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
34 | 31, 1, 9, 32, 33 | psrelbas 21896 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
35 | 34 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
36 | | elrabi 3673 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
37 | 36 | adantl 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
38 | 35, 37 | ffvelcdmd 7094 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
39 | | psdmul.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
40 | 31, 1, 9, 32, 39 | psrelbas 21896 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
41 | 40 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
42 | | eqid 2725 |
. . . . . . . . . . . 12
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
43 | 9, 42 | psrbagconcl 21884 |
. . . . . . . . . . 11
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
44 | 14, 43 | sylan 578 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
45 | | elrabi 3673 |
. . . . . . . . . 10
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
46 | 44, 45 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
47 | 41, 46 | ffvelcdmd 7094 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
48 | 1, 29, 30, 38, 47 | ringcld 20211 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
49 | 1, 17, 20, 28, 48 | mulgnn0cld 19058 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
50 | | disjdifr 4474 |
. . . . . . 7
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = ∅ |
51 | 50 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = ∅) |
52 | | 1nn0 12521 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ0 |
53 | | 0nn0 12520 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
54 | 52, 53 | ifcli 4577 |
. . . . . . . . . . . . . . 15
⊢ if(𝑖 = 𝑋, 1, 0) ∈
ℕ0 |
55 | 54 | nn0ge0i 12532 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
if(𝑖 = 𝑋, 1, 0) |
56 | 22 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
57 | 56 | nn0red 12566 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℝ) |
58 | 54 | nn0rei 12516 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑖 = 𝑋, 1, 0) ∈ ℝ |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ) |
60 | 57, 59 | addge01d 11834 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (0 ≤ if(𝑖 = 𝑋, 1, 0) ↔ (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
61 | 55, 60 | mpbii 232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
62 | 61 | ralrimiva 3135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
∀𝑖 ∈ 𝐼 (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
63 | 22 | ffnd 6724 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼) |
64 | 52, 53 | ifcli 4577 |
. . . . . . . . . . . . . . . . 17
⊢ if(𝑦 = 𝑋, 1, 0) ∈
ℕ0 |
65 | 64 | elexi 3482 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑦 = 𝑋, 1, 0) ∈ V |
66 | | eqid 2725 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) |
67 | 65, 66 | fnmpti 6699 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼 |
68 | 67 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
69 | 8 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑉) |
70 | | inidm 4217 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
71 | 63, 68, 69, 69, 70 | offn 7698 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
72 | | eqidd 2726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
73 | | eqeq1 2729 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑖 → (𝑦 = 𝑋 ↔ 𝑖 = 𝑋)) |
74 | 73 | ifbid 4553 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0)) |
75 | 54 | elexi 3482 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑖 = 𝑋, 1, 0) ∈ V |
76 | 74, 66, 75 | fvmpt 7004 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ 𝐼 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
77 | 76 | adantl 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
78 | 63, 68, 69, 69, 70, 72, 77 | ofval 7696 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
79 | 63, 71, 69, 69, 70, 72, 78 | ofrfval 7695 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
80 | 62, 79 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
81 | 80 | adantr 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
82 | 8 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑉) |
83 | 9 | psrbagf 21868 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0) |
84 | 83 | adantl 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) |
85 | 22 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
86 | 9 | psrbagf 21868 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
87 | 14, 86 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
88 | 87 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
89 | | nn0re 12514 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ0
→ 𝑞 ∈
ℝ) |
90 | | nn0re 12514 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℕ0
→ 𝑟 ∈
ℝ) |
91 | | nn0re 12514 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ0
→ 𝑠 ∈
ℝ) |
92 | | letr 11340 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
93 | 89, 90, 91, 92 | syl3an 1157 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
94 | 93 | adantl 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0)) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
95 | 82, 84, 85, 88, 94 | caoftrn 7724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∘r ≤ 𝑑 ∧ 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) → 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
96 | 81, 95 | mpan2d 692 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘r ≤ 𝑑 → 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
97 | 96 | ss2rabdv 4069 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
98 | | undifr 4484 |
. . . . . . . 8
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
99 | 97, 98 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
100 | 99 | eqcomd 2731 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
101 | 1, 2, 6, 16, 49, 51, 100 | gsummptfidmsplit 19897 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
102 | | eqid 2725 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
103 | | ovex 7452 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
104 | 103 | rabex 5335 |
. . . . . . . 8
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
105 | 104 | rabex 5335 |
. . . . . . 7
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V |
106 | 105 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V) |
107 | | ovex 7452 |
. . . . . . . . 9
⊢ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ V |
108 | | eqid 2725 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
109 | 107, 108 | fnmpti 6699 |
. . . . . . . 8
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
110 | 109 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
111 | | fvexd 6911 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(0g‘𝑅)
∈ V) |
112 | 110, 16, 111 | fndmfifsupp 9403 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) finSupp
(0g‘𝑅)) |
113 | 1, 102, 17, 106, 48, 112, 6, 27 | gsummulg 19909 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
114 | | difrab 4307 |
. . . . . . . . . . 11
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)} |
115 | 114 | eleq2i 2817 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)}) |
116 | | breq1 5152 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑢 → (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
117 | | breq1 5152 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑢 → (𝑘 ∘r ≤ 𝑑 ↔ 𝑢 ∘r ≤ 𝑑)) |
118 | 117 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑢 → (¬ 𝑘 ∘r ≤ 𝑑 ↔ ¬ 𝑢 ∘r ≤ 𝑑)) |
119 | 116, 118 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑) ↔ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) |
120 | 119 | elrab 3679 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) |
121 | 9 | psrbagf 21868 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑢:𝐼⟶ℕ0) |
122 | 121 | ffnd 6724 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑢 Fn 𝐼) |
123 | 122 | adantl 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢 Fn 𝐼) |
124 | 71 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
125 | 8 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ 𝑉) |
126 | | eqidd 2726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
127 | 63 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼) |
128 | 64 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝐼 → if(𝑦 = 𝑋, 1, 0) ∈
ℕ0) |
129 | 66, 128 | fmpti 7121 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 |
130 | 129 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
131 | 130 | ffnd 6724 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
132 | 131 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
133 | | eqidd 2726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
134 | 76 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
135 | 127, 132,
125, 125, 70, 133, 134 | ofval 7696 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
136 | 123, 124,
125, 125, 70, 126, 135 | ofrfval 7695 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
137 | 123, 127,
125, 125, 70, 126, 133 | ofrfval 7695 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
138 | 137 | notbid 317 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬
𝑢 ∘r ≤
𝑑 ↔ ¬
∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
139 | | rexnal 3089 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑖 ∈
𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ ¬ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
140 | 138, 139 | bitr4di 288 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬
𝑢 ∘r ≤
𝑑 ↔ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
141 | 136, 140 | anbi12d 630 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑) ↔ (∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
142 | 25 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) ∈
ℕ0) |
143 | 121 | adantl 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢:𝐼⟶ℕ0) |
144 | 23 | adantr 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
145 | 143, 144 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈
ℕ0) |
146 | 145 | adantlr 713 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈
ℕ0) |
147 | 146 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈
ℕ0) |
148 | | nn0nlt0 12531 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑‘𝑋) ∈ ℕ0 → ¬
(𝑑‘𝑋) < 0) |
149 | 142, 148 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (𝑑‘𝑋) < 0) |
150 | 22 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
151 | 150 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
152 | 151 | nn0cnd 12567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
153 | 152 | addridd 11446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑‘𝑖) + 0) = (𝑑‘𝑖)) |
154 | 153 | breq2d 5161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) ↔ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
155 | 154 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
156 | | ifnefalse 4542 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 ≠ 𝑋 → if(𝑖 = 𝑋, 1, 0) = 0) |
157 | 156 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑖 ≠ 𝑋 → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + 0)) |
158 | 157 | breq2d 5161 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑖 ≠ 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0))) |
159 | 158 | imbi1d 340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ≠ 𝑋 → (((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) ↔ ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
160 | 155, 159 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑖 ≠ 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
161 | 160 | imp 405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
162 | 161 | impancom 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑖 ≠ 𝑋 → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
163 | 162 | necon1bd 2947 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → 𝑖 = 𝑋)) |
164 | 163 | ancrd 550 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
165 | 164 | ex 411 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))))) |
166 | 165 | ralimdva 3156 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → ∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))))) |
167 | 166 | anim1d 609 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → (∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
168 | 167 | imp 405 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
169 | | rexim 3076 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → ∃𝑖 ∈ 𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
170 | 169 | imp 405 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ∃𝑖 ∈ 𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
171 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑋 → (𝑢‘𝑖) = (𝑢‘𝑋)) |
172 | | fveq2 6896 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑋 → (𝑑‘𝑖) = (𝑑‘𝑋)) |
173 | 171, 172 | breq12d 5162 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 = 𝑋 → ((𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
174 | 173 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑋 → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
175 | 174 | ceqsrexbv 3639 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑖 ∈
𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) ↔ (𝑋 ∈ 𝐼 ∧ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
176 | 175 | simprbi 495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑖 ∈
𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
177 | 170, 176 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
178 | 25 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈
ℕ0) |
179 | 178 | nn0red 12566 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈ ℝ) |
180 | 146 | nn0red 12566 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈ ℝ) |
181 | 179, 180 | ltnled 11393 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑‘𝑋) < (𝑢‘𝑋) ↔ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
182 | 181 | biimpar 476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ ¬
(𝑢‘𝑋) ≤ (𝑑‘𝑋)) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
183 | 177, 182 | sylan2 591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
184 | 168, 183 | syldan 589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
185 | | breq2 5153 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢‘𝑋) = 0 → ((𝑑‘𝑋) < (𝑢‘𝑋) ↔ (𝑑‘𝑋) < 0)) |
186 | 184, 185 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑢‘𝑋) = 0 → (𝑑‘𝑋) < 0)) |
187 | 149, 186 | mtod 197 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (𝑢‘𝑋) = 0) |
188 | 187 | neqned 2936 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ≠ 0) |
189 | | elnnne0 12519 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢‘𝑋) ∈ ℕ ↔ ((𝑢‘𝑋) ∈ ℕ0 ∧ (𝑢‘𝑋) ≠ 0)) |
190 | 147, 188,
189 | sylanbrc 581 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈ ℕ) |
191 | | elfzo0 13708 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋)) ↔ ((𝑑‘𝑋) ∈ ℕ0 ∧ (𝑢‘𝑋) ∈ ℕ ∧ (𝑑‘𝑋) < (𝑢‘𝑋))) |
192 | 142, 190,
184, 191 | syl3anbrc 1340 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋))) |
193 | | fzostep1 13784 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋)) → (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ∨ ((𝑑‘𝑋) + 1) = (𝑢‘𝑋))) |
194 | 192, 193 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ∨ ((𝑑‘𝑋) + 1) = (𝑢‘𝑋))) |
195 | 147 | nn0red 12566 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈ ℝ) |
196 | 27 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
197 | 196 | nn0red 12566 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) ∈ ℝ) |
198 | 23 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
199 | | iftrue 4536 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑋 → if(𝑖 = 𝑋, 1, 0) = 1) |
200 | 172, 199 | oveq12d 7437 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑋 → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑋) + 1)) |
201 | 171, 200 | breq12d 5162 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
202 | 201 | rspcv 3602 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ 𝐼 → (∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
203 | 198, 202 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
204 | 203 | imp 405 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1)) |
205 | 204 | adantrr 715 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1)) |
206 | 195, 197,
205 | lensymd 11397 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋)) |
207 | 206 | intn3an3d 1477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (((𝑑‘𝑋) + 1) ∈ ℕ0 ∧
(𝑢‘𝑋) ∈ ℕ ∧ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋))) |
208 | | elfzo0 13708 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ↔ (((𝑑‘𝑋) + 1) ∈ ℕ0 ∧
(𝑢‘𝑋) ∈ ℕ ∧ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋))) |
209 | 207, 208 | sylnibr 328 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ ((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋))) |
210 | 194, 209 | orcnd 876 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
211 | 141, 210 | sylbida 590 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑)) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
212 | 211 | anasss 465 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
213 | 120, 212 | sylan2b 592 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)}) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
214 | 115, 213 | sylan2b 592 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
215 | 214 | oveq1d 7434 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
216 | 215 | mpteq2dva 5249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
217 | 216 | oveq2d 7435 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
218 | 9 | psrbaglefi 21882 |
. . . . . . . . 9
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ Fin) |
219 | 218 | adantl 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ Fin) |
220 | 19 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Mnd) |
221 | 27 | adantr 479 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
222 | 4 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Ring) |
223 | | elrabi 3673 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
224 | 34 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
225 | 224 | ffvelcdmda 7093 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
226 | 223, 225 | sylan2 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
227 | 40 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
228 | 22 | adantr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑:𝐼⟶ℕ0) |
229 | 228 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
230 | 229 | nn0cnd 12567 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
231 | 223, 121 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑢:𝐼⟶ℕ0) |
232 | 231 | adantl 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢:𝐼⟶ℕ0) |
233 | 232 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
234 | 233 | nn0cnd 12567 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
235 | 54 | nn0cni 12517 |
. . . . . . . . . . . . . . . . 17
⊢ if(𝑖 = 𝑋, 1, 0) ∈ ℂ |
236 | 235 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
237 | 230, 234,
236 | subadd23d 11625 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢‘𝑖)))) |
238 | 230, 236,
234 | addsubassd 11623 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)) = ((𝑑‘𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢‘𝑖)))) |
239 | 237, 238 | eqtr4d 2768 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)) = (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖))) |
240 | 239 | mpteq2dva 5249 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
241 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
242 | 9, 241 | psrbagconcl 21884 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
243 | | elrabi 3673 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∘f −
𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
244 | 242, 243 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
245 | 244 | adantll 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
246 | 9 | psrbagf 21868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∘f −
𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f −
𝑢):𝐼⟶ℕ0) |
247 | 245, 246 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢):𝐼⟶ℕ0) |
248 | 247 | ffnd 6724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) Fn 𝐼) |
249 | 67 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
250 | 8 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ 𝑉) |
251 | 228 | ffnd 6724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 Fn 𝐼) |
252 | 232 | ffnd 6724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢 Fn 𝐼) |
253 | | eqidd 2726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
254 | | eqidd 2726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
255 | 251, 252,
250, 250, 70, 253, 254 | ofval 7696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑖) = ((𝑑‘𝑖) − (𝑢‘𝑖))) |
256 | 76 | adantl 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
257 | 248, 249,
250, 250, 70, 255, 256 | offval 7694 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)))) |
258 | | simplr 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
259 | 11 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
260 | 258, 259,
13 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
261 | 260, 86 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
262 | 261 | ffnd 6724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
263 | 251, 249,
250, 250, 70, 253, 256 | ofval 7696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
264 | 262, 252,
250, 250, 70, 263, 254 | offval 7694 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
265 | 240, 257,
264 | 3eqtr4d 2775 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) |
266 | 9 | psrbagaddcl 21878 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∘f −
𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑 ∘f −
𝑢) ∘f +
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
267 | 245, 259,
266 | syl2anc 582 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
268 | 265, 267 | eqeltrrd 2826 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
269 | 227, 268 | ffvelcdmd 7094 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
270 | 1, 29, 222, 226, 269 | ringcld 20211 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
271 | 1, 17, 220, 221, 270 | mulgnn0cld 19058 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
272 | | disjdifr 4474 |
. . . . . . . . 9
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = ∅ |
273 | 272 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = ∅) |
274 | | simpl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) → 𝑘 ∘r ≤ 𝑑) |
275 | 274 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) → 𝑘 ∘r ≤ 𝑑)) |
276 | 275 | ss2rabi 4070 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
277 | 276 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
278 | | undifr 4484 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↔ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
279 | 277, 278 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
280 | 279 | eqcomd 2731 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
281 | 1, 2, 6, 219, 271, 273, 280 | gsummptfidmsplit 19897 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
282 | | eldifi 4123 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
283 | 23 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑋 ∈ 𝐼) |
284 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑑‘𝑋) = (𝑑‘𝑋)) |
285 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
286 | 251, 252,
250, 250, 70, 284, 285 | ofval 7696 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
287 | 283, 286 | mpdan 685 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
288 | 282, 287 | sylan2 591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
289 | 288 | oveq2d 7435 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) = ((𝑢‘𝑋) + ((𝑑‘𝑋) − (𝑢‘𝑋)))) |
290 | 232, 283 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢‘𝑋) ∈
ℕ0) |
291 | 282, 290 | sylan2 591 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑢‘𝑋) ∈
ℕ0) |
292 | 291 | nn0cnd 12567 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑢‘𝑋) ∈ ℂ) |
293 | 25 | nn0cnd 12567 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈ ℂ) |
294 | 293 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑑‘𝑋) ∈ ℂ) |
295 | 292, 294 | pncan3d 11606 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑‘𝑋) − (𝑢‘𝑋))) = (𝑑‘𝑋)) |
296 | 289, 295 | eqtrd 2765 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) = (𝑑‘𝑋)) |
297 | 296 | oveq1d 7434 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) + 1) = ((𝑑‘𝑋) + 1)) |
298 | 247, 283 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈
ℕ0) |
299 | 282, 298 | sylan2 591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈
ℕ0) |
300 | 299 | nn0cnd 12567 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈ ℂ) |
301 | | 1cnd 11241 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → 1 ∈
ℂ) |
302 | 292, 300,
301 | addassd 11268 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) + 1) = ((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))) |
303 | 297, 302 | eqtr3d 2767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑‘𝑋) + 1) = ((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))) |
304 | 303 | oveq1d 7434 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
305 | 19 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → 𝑅 ∈ Mnd) |
306 | | peano2nn0 12545 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑 ∘f −
𝑢)‘𝑋) ∈ ℕ0 → (((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈
ℕ0) |
307 | 298, 306 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈
ℕ0) |
308 | 282, 307 | sylan2 591 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈
ℕ0) |
309 | 282, 270 | sylan2 591 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
310 | 1, 17, 2 | mulgnn0dir 19067 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Mnd ∧ ((𝑢‘𝑋) ∈ ℕ0 ∧ (((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈ ℕ0 ∧
((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅))) → (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
311 | 305, 291,
308, 309, 310 | syl13anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
312 | 304, 311 | eqtrd 2765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
313 | 312 | mpteq2dva 5249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
314 | 313 | oveq2d 7435 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
315 | | difssd 4129 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
316 | 219, 315 | ssfid 9292 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ Fin) |
317 | 1, 17, 220, 290, 270 | mulgnn0cld 19058 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
318 | 282, 317 | sylan2 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
319 | 1, 17, 220, 307, 270 | mulgnn0cld 19058 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
320 | 282, 319 | sylan2 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
321 | | eqid 2725 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
322 | | eqid 2725 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
323 | 1, 2, 6, 316, 318, 320, 321, 322 | gsummptfidmadd 19892 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
324 | 314, 323 | eqtrd 2765 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
325 | 23 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑋 ∈ 𝐼) |
326 | 63 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑑 Fn 𝐼) |
327 | | elrabi 3673 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
328 | 327, 122 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 Fn 𝐼) |
329 | 328 | adantl 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑢 Fn 𝐼) |
330 | 8 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝐼 ∈ 𝑉) |
331 | | eqidd 2726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → (𝑑‘𝑋) = (𝑑‘𝑋)) |
332 | | eqidd 2726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
333 | 326, 329,
330, 330, 70, 331, 332 | ofval 7696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
334 | 325, 333 | mpdan 685 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
335 | | fveq1 6895 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑢 → (𝑘‘𝑋) = (𝑢‘𝑋)) |
336 | 335 | eqeq1d 2727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑢 → ((𝑘‘𝑋) = 0 ↔ (𝑢‘𝑋) = 0)) |
337 | 117, 336 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
338 | 337 | elrab 3679 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
339 | 338 | simprbi 495 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
340 | 339 | simprd 494 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → (𝑢‘𝑋) = 0) |
341 | 340 | adantl 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑢‘𝑋) = 0) |
342 | 341 | oveq2d 7435 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) − (𝑢‘𝑋)) = ((𝑑‘𝑋) − 0)) |
343 | 25 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) ∈
ℕ0) |
344 | 343 | nn0cnd 12567 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) ∈ ℂ) |
345 | 344 | subid1d 11592 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) − 0) = (𝑑‘𝑋)) |
346 | 334, 342,
345 | 3eqtrrd 2770 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) = ((𝑑 ∘f − 𝑢)‘𝑋)) |
347 | 346 | oveq1d 7434 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) + 1) = (((𝑑 ∘f − 𝑢)‘𝑋) + 1)) |
348 | 347 | oveq1d 7434 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
349 | 348 | mpteq2dva 5249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
350 | 349 | oveq2d 7435 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
351 | 324, 350 | oveq12d 7437 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
352 | 18 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp) |
353 | 104 | rabex 5335 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ V |
354 | 353 | difexi 5331 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ V |
355 | 354 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ V) |
356 | 318 | fmpttd 7124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})⟶(Base‘𝑅)) |
357 | | ovex 7452 |
. . . . . . . . . . . 12
⊢ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ V |
358 | 357, 321 | fnmpti 6699 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
359 | 358 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
360 | 359, 316,
111 | fndmfifsupp 9403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
361 | 1, 102, 6, 355, 356, 360 | gsumcl 19882 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
362 | 320 | fmpttd 7124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})⟶(Base‘𝑅)) |
363 | | ovex 7452 |
. . . . . . . . . . . 12
⊢ ((((𝑑 ∘f −
𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ V |
364 | 363, 322 | fnmpti 6699 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
365 | 364 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
366 | 365, 316,
111 | fndmfifsupp 9403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
367 | 1, 102, 6, 355, 362, 366 | gsumcl 19882 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
368 | 104 | rabex 5335 |
. . . . . . . . . 10
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ V |
369 | 368 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ V) |
370 | 276 | sseli 3972 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
371 | 370, 319 | sylan2 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
372 | 371 | fmpttd 7124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}⟶(Base‘𝑅)) |
373 | | eqid 2725 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
374 | 363, 373 | fnmpti 6699 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} |
375 | 374 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
376 | 219, 277 | ssfid 9292 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ Fin) |
377 | 375, 376,
111 | fndmfifsupp 9403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
378 | 1, 102, 6, 369, 372, 377 | gsumcl 19882 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
379 | 1, 2, 352, 361, 367, 378 | grpassd 18910 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
380 | 281, 351,
379 | 3eqtrd 2769 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
381 | 217, 380 | oveq12d 7437 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
382 | 101, 113,
381 | 3eqtr3d 2773 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
383 | | psdmul.m |
. . . . . 6
⊢ · =
(.r‘𝑆) |
384 | 33 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹 ∈ 𝐵) |
385 | 39 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐺 ∈ 𝐵) |
386 | 31, 32, 29, 383, 9, 384, 385, 14 | psrmulval 21906 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
387 | 386 | oveq2d 7435 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
388 | 105 | difexi 5331 |
. . . . . . 7
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ V |
389 | 388 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ V) |
390 | | eldifi 4123 |
. . . . . . . 8
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
391 | 36, 121 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢:𝐼⟶ℕ0) |
392 | 391 | adantl 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢:𝐼⟶ℕ0) |
393 | 23 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑋 ∈ 𝐼) |
394 | 392, 393 | ffvelcdmd 7094 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝑢‘𝑋) ∈
ℕ0) |
395 | 1, 17, 20, 394, 48 | mulgnn0cld 19058 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
396 | 390, 395 | sylan2 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
397 | 396 | fmpttd 7124 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})⟶(Base‘𝑅)) |
398 | | eqid 2725 |
. . . . . . . . 9
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
399 | 357, 398 | fnmpti 6699 |
. . . . . . . 8
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
400 | 399 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
401 | | difssd 4129 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
402 | 16, 401 | ssfid 9292 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ Fin) |
403 | 400, 402,
111 | fndmfifsupp 9403 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
404 | 1, 102, 6, 389, 397, 403 | gsumcl 19882 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
405 | 1, 2, 352, 367, 378 | grpcld 18912 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) ∈ (Base‘𝑅)) |
406 | 1, 2, 352, 404, 361, 405 | grpassd 18910 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
407 | 382, 387,
406 | 3eqtr4d 2775 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
408 | 407 | mpteq2dva 5249 |
. 2
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
409 | 31, 32, 383, 4, 33, 39 | psrmulcl 21908 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
410 | 31, 32, 9, 8, 3, 23,
409 | psdval 22106 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
411 | | psdmul.p |
. . . 4
⊢ + =
(+g‘𝑆) |
412 | 18 | grpmgmd 18926 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mgm) |
413 | 31, 32, 8, 412, 23, 33 | psdcl 22108 |
. . . . 5
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
414 | 31, 32, 383, 4, 413, 39 | psrmulcl 21908 |
. . . 4
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∈ 𝐵) |
415 | 31, 32, 8, 412, 23, 39 | psdcl 22108 |
. . . . 5
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵) |
416 | 31, 32, 383, 4, 33, 415 | psrmulcl 21908 |
. . . 4
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) ∈ 𝐵) |
417 | 31, 32, 2, 411, 414, 416 | psradd 21899 |
. . 3
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f
(+g‘𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))) |
418 | 31, 1, 9, 32, 414 | psrelbas 21896 |
. . . . 5
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
419 | 418 | ffnd 6724 |
. . . 4
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
420 | 31, 1, 9, 32, 416 | psrelbas 21896 |
. . . . 5
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
421 | 420 | ffnd 6724 |
. . . 4
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
422 | 104 | a1i 11 |
. . . 4
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
423 | | inidm 4217 |
. . . 4
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∩ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
424 | 413 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
425 | 31, 32, 29, 383, 9, 424, 385, 7 | psrmulval 21906 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = (𝑅 Σg (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))))) |
426 | 353 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ V) |
427 | 4 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Ring) |
428 | | elrabi 3673 |
. . . . . . . . 9
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
429 | 31, 1, 9, 32, 413 | psrelbas 21896 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
430 | 429 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
431 | 430 | ffvelcdmda 7093 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅)) |
432 | 428, 431 | sylan2 591 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅)) |
433 | 40 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
434 | 9, 241 | psrbagconcl 21884 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
435 | 434 | adantll 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
436 | | elrabi 3673 |
. . . . . . . . . 10
⊢ ((𝑑 ∘f −
𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑑 ∘f − 𝑏) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
437 | 435, 436 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
438 | 433, 437 | ffvelcdmd 7094 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘(𝑑 ∘f − 𝑏)) ∈ (Base‘𝑅)) |
439 | 1, 29, 427, 432, 438 | ringcld 20211 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) ∈ (Base‘𝑅)) |
440 | 439 | fmpttd 7124 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))):{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}⟶(Base‘𝑅)) |
441 | | ovex 7452 |
. . . . . . . . 9
⊢
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) ∈ V |
442 | | eqid 2725 |
. . . . . . . . 9
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) = (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) |
443 | 441, 442 | fnmpti 6699 |
. . . . . . . 8
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
444 | 443 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
445 | 444, 219,
111 | fndmfifsupp 9403 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) finSupp
(0g‘𝑅)) |
446 | | eqid 2725 |
. . . . . . 7
⊢ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
447 | | df-of 7685 |
. . . . . . . . . 10
⊢
∘f + = (𝑚
∈ V, 𝑛 ∈ V
↦ (𝑜 ∈ (dom
𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
448 | | vex 3465 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
449 | 448 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢 ∈ V) |
450 | | ssv 4001 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ V |
451 | 450 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ V) |
452 | | ssv 4001 |
. . . . . . . . . . 11
⊢ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V |
453 | 452 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V) |
454 | 447, 449,
451, 453 | elimampo 7558 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
455 | 454 | biimpa 475 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
456 | | elrabi 3673 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
457 | 9 | psrbagf 21868 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑚:𝐼⟶ℕ0) |
458 | 457 | ffund 6727 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → Fun 𝑚) |
459 | 456, 458 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → Fun 𝑚) |
460 | 459 | funfnd 6585 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚 Fn dom 𝑚) |
461 | 460 | ad2antrl 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 Fn dom 𝑚) |
462 | | velsn 4646 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ 𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
463 | | funmpt 6592 |
. . . . . . . . . . . . . . . 16
⊢ Fun
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) |
464 | | funeq 6574 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (Fun 𝑛 ↔ Fun (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
465 | 463, 464 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → Fun 𝑛) |
466 | 465 | funfnd 6585 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → 𝑛 Fn dom 𝑛) |
467 | 462, 466 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 Fn dom 𝑛) |
468 | 467 | ad2antll 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑛 Fn dom 𝑛) |
469 | | vex 3465 |
. . . . . . . . . . . . . 14
⊢ 𝑚 ∈ V |
470 | 469 | dmex 7917 |
. . . . . . . . . . . . 13
⊢ dom 𝑚 ∈ V |
471 | 470 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑚 ∈ V) |
472 | | vex 3465 |
. . . . . . . . . . . . . 14
⊢ 𝑛 ∈ V |
473 | 472 | dmex 7917 |
. . . . . . . . . . . . 13
⊢ dom 𝑛 ∈ V |
474 | 473 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑛 ∈ V) |
475 | | eqid 2725 |
. . . . . . . . . . . 12
⊢ (dom
𝑚 ∩ dom 𝑛) = (dom 𝑚 ∩ dom 𝑛) |
476 | | eqidd 2726 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑚) → (𝑚‘𝑜) = (𝑚‘𝑜)) |
477 | | eqidd 2726 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑛) → (𝑛‘𝑜) = (𝑛‘𝑜)) |
478 | 461, 468,
471, 474, 475, 476, 477 | offval 7694 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
479 | 478 | eqeq2d 2736 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
480 | | elsni 4647 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
481 | 480 | oveq2d 7435 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑚 ∘f + 𝑛) = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
482 | 481 | eqeq2d 2736 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
483 | 482 | ad2antll 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
484 | 8 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ 𝑉) |
485 | 456, 457 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚:𝐼⟶ℕ0) |
486 | 485 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚:𝐼⟶ℕ0) |
487 | 129 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
488 | | nn0cn 12515 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 ∈ ℕ0
→ 𝑞 ∈
ℂ) |
489 | | nn0cn 12515 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℕ0
→ 𝑟 ∈
ℂ) |
490 | | nn0cn 12515 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ ℕ0
→ 𝑠 ∈
ℂ) |
491 | | addsubass 11502 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
492 | 488, 489,
490, 491 | syl3an 1157 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
493 | 492 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ (𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0
∧ 𝑠 ∈
ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
494 | 484, 486,
487, 487, 493 | caofass 7723 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
495 | | simpr 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
496 | 54 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈
ℕ0) |
497 | 66, 74, 495, 496 | fvmptd3 7027 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
498 | 131, 131,
8, 8, 70, 497, 497 | offval 7694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) |
499 | 498 | oveq2d 7435 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
500 | 499 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
501 | 235 | subidi 11563 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)) = 0 |
502 | 501 | mpteq2i 5254 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ 0) |
503 | | fconstmpt 5740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 × {0}) = (𝑖 ∈ 𝐼 ↦ 0) |
504 | 502, 503 | eqtr4i 2756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝐼 × {0}) |
505 | 504 | oveq2i 7430 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝐼 × {0})) |
506 | | 0zd 12603 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 0 ∈
ℤ) |
507 | 488 | addridd 11446 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 ∈ ℕ0
→ (𝑞 + 0) = 𝑞) |
508 | 507 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑞 ∈ ℕ0) → (𝑞 + 0) = 𝑞) |
509 | 484, 486,
506, 508 | caofid0r 7718 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝐼 × {0})) = 𝑚) |
510 | 505, 509 | eqtrid 2777 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚) |
511 | 494, 500,
510 | 3eqtrd 2769 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚) |
512 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
513 | 511, 512 | eqeltrd 2825 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
514 | | oveq1 7426 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
515 | 514 | eleq1d 2810 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
516 | 513, 515 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
517 | 516 | adantrr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
518 | 483, 517 | sylbid 239 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
519 | 479, 518 | sylbird 259 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
520 | 519 | rexlimdvva 3201 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
521 | 455, 520 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
522 | | simpr 483 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
523 | 8 | mptexd 7236 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V) |
524 | | elsng 4644 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
525 | 523, 524 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
526 | 66, 525 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) |
527 | 526 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) |
528 | 447 | mpofun 7544 |
. . . . . . . . 9
⊢ Fun
∘f + |
529 | 528 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → Fun
∘f + ) |
530 | | xpss 5694 |
. . . . . . . . 9
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ (V ×
V) |
531 | 470 | inex1 5318 |
. . . . . . . . . . . 12
⊢ (dom
𝑚 ∩ dom 𝑛) ∈ V |
532 | 531 | mptex 7235 |
. . . . . . . . . . 11
⊢ (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V |
533 | 532 | rgen2w 3055 |
. . . . . . . . . 10
⊢
∀𝑚 ∈ V
∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V |
534 | 447 | dmmpoga 8078 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈ V
∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V → dom ∘f +
= (V × V)) |
535 | 533, 534 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → dom
∘f + = (V × V)) |
536 | 530, 535 | sseqtrrid 4030 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ dom ∘f +
) |
537 | 522, 527,
529, 536 | elovimad 7468 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) |
538 | 8 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝐼 ∈ 𝑉) |
539 | | elrabi 3673 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
540 | 9 | psrbagf 21868 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑣:𝐼⟶ℕ0) |
541 | 539, 540 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑣:𝐼⟶ℕ0) |
542 | 541 | ad2antll 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑣:𝐼⟶ℕ0) |
543 | 129 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
544 | 492 | adantl 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ (𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0
∧ 𝑠 ∈
ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
545 | 538, 542,
543, 543, 544 | caofass 7723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑣 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
546 | 131 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
547 | 76 | adantl 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
548 | 546, 546,
538, 538, 70, 547, 547 | offval 7694 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) |
549 | 548 | oveq2d 7435 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
550 | 504 | oveq2i 7430 |
. . . . . . . . . . 11
⊢ (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑣 ∘f + (𝐼 × {0})) |
551 | | 0zd 12603 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 0 ∈
ℤ) |
552 | | nn0cn 12515 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℕ0
→ 𝑝 ∈
ℂ) |
553 | 552 | addridd 11446 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℕ0
→ (𝑝 + 0) = 𝑝) |
554 | 553 | adantl 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝) |
555 | 538, 542,
551, 554 | caofid0r 7718 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + (𝐼 × {0})) = 𝑣) |
556 | 550, 555 | eqtrid 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑣) |
557 | 545, 549,
556 | 3eqtrrd 2770 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑣 = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
558 | | oveq1 7426 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
559 | 558 | eqeq2d 2736 |
. . . . . . . . 9
⊢ (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
560 | 557, 559 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
561 | 11 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
562 | 9 | psrbagaddcl 21878 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
563 | 456, 561,
562 | syl2an2 684 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
564 | 9 | psrbagf 21868 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
565 | 563, 564 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
566 | 565 | adantrr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
567 | | feq1 6704 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢:𝐼⟶ℕ0 ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)) |
568 | 566, 567 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢:𝐼⟶ℕ0)) |
569 | 483, 568 | sylbid 239 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → 𝑢:𝐼⟶ℕ0)) |
570 | 479, 569 | sylbird 259 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢:𝐼⟶ℕ0)) |
571 | 570 | rexlimdvva 3201 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢:𝐼⟶ℕ0)) |
572 | 455, 571 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℕ0) |
573 | 572 | adantrr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢:𝐼⟶ℕ0) |
574 | 573 | ffvelcdmda 7093 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
575 | 574 | nn0cnd 12567 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
576 | 235 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
577 | 575, 576 | npcand 11607 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
578 | 577 | mpteq2dva 5249 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
579 | 573 | ffnd 6724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 Fn 𝐼) |
580 | 579, 546,
538, 538, 70 | offn 7698 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
581 | | eqidd 2726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
582 | 579, 546,
538, 538, 70, 581, 547 | ofval 7696 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
583 | 580, 546,
538, 538, 70, 582, 547 | offval 7694 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)))) |
584 | 573 | feqmptd 6966 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
585 | 578, 583,
584 | 3eqtr4rd 2776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
586 | | oveq1 7426 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
587 | 586 | eqeq2d 2736 |
. . . . . . . . 9
⊢ (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
588 | 585, 587 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
589 | 560, 588 | impbid 211 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
590 | 446, 521,
537, 589 | f1o2d 7675 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))–1-1-onto→{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
591 | 1, 102, 6, 426, 440, 445, 590 | gsumf1o 19883 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))))) = (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
592 | 553 | adantl 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝) |
593 | 484, 486,
506, 592 | caofid0r 7718 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝐼 × {0})) = 𝑚) |
594 | 505, 593 | eqtrid 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚) |
595 | 494, 500,
594 | 3eqtrd 2769 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚) |
596 | 595, 512 | eqeltrd 2825 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
597 | 596, 515 | syl5ibrcom 246 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
598 | 597 | adantrr 715 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
599 | 483, 598 | sylbid 239 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
600 | 479, 599 | sylbird 259 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
601 | 600 | rexlimdvva 3201 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
602 | 455, 601 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
603 | | eqidd 2726 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
604 | | eqidd 2726 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) = (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))))) |
605 | | fveq2 6896 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
606 | | oveq2 7427 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑑 ∘f − 𝑏) = (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
607 | 606 | fveq2d 6900 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐺‘(𝑑 ∘f − 𝑏)) = (𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
608 | 605, 607 | oveq12d 7437 |
. . . . . . . . 9
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
609 | 602, 603,
604, 608 | fmptco 7138 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
610 | 8 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐼 ∈ 𝑉) |
611 | 3 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ CRing) |
612 | 23 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑋 ∈ 𝐼) |
613 | 33 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹 ∈ 𝐵) |
614 | | elrabi 3673 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
615 | 602, 614 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
616 | 31, 32, 9, 610, 611, 612, 613, 615 | psdcoef 22107 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g‘𝑅)(𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
617 | 572 | ffnd 6724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 Fn 𝐼) |
618 | 129 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
619 | 618 | ffnd 6724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
620 | | eqidd 2726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
621 | | iftrue 4536 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1) |
622 | | 1ex 11242 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
V |
623 | 621, 66, 622 | fvmpt 7004 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ 𝐼 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
624 | 623 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
625 | 617, 619,
610, 610, 70, 620, 624 | ofval 7696 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢‘𝑋) − 1)) |
626 | 612, 625 | mpdan 685 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢‘𝑋) − 1)) |
627 | 626 | oveq1d 7434 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (((𝑢‘𝑋) − 1) + 1)) |
628 | | nn0sscn 12510 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 ⊆ ℂ |
629 | 628 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ℕ0
⊆ ℂ) |
630 | 572, 629 | fssd 6740 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℂ) |
631 | 630, 612 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈ ℂ) |
632 | | 1cnd 11241 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 1 ∈
ℂ) |
633 | 631, 632 | npcand 11607 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢‘𝑋) − 1) + 1) = (𝑢‘𝑋)) |
634 | 627, 633 | eqtrd 2765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (𝑢‘𝑋)) |
635 | 617, 619,
610, 610, 70 | offn 7698 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
636 | | eqidd 2726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
637 | 76 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
638 | 617, 619,
610, 610, 70, 636, 637 | ofval 7696 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
639 | 572 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
640 | 639 | nn0cnd 12567 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
641 | 235 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
642 | 640, 641 | npcand 11607 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
643 | 610, 635,
619, 617, 638, 637, 642 | offveq 7710 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑢) |
644 | 643 | fveq2d 6900 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘𝑢)) |
645 | 634, 644 | oveq12d 7437 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g‘𝑅)(𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))) |
646 | 616, 645 | eqtrd 2765 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))) |
647 | 21 | ad2antlr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑:𝐼⟶ℕ0) |
648 | 647 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
649 | 648 | nn0cnd 12567 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
650 | 649, 640,
641 | subsub3d 11633 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) = (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖))) |
651 | 650 | mpteq2dva 5249 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
652 | 63 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑 Fn 𝐼) |
653 | | eqidd 2726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
654 | 652, 635,
610, 610, 70, 653, 638 | offval 7694 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))))) |
655 | 652, 619,
610, 610, 70 | offn 7698 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
656 | 652, 619,
610, 610, 70, 653, 637 | ofval 7696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
657 | 655, 617,
610, 610, 70, 656, 636 | offval 7694 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
658 | 651, 654,
657 | 3eqtr4d 2775 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) |
659 | 658 | fveq2d 6900 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) |
660 | 646, 659 | oveq12d 7437 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
661 | 4 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Ring) |
662 | 572, 612 | ffvelcdmd 7094 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈
ℕ0) |
663 | 662 | nn0zd 12617 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈ ℤ) |
664 | 34 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
665 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
666 | 11 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
667 | | simprl 769 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
668 | | eqid 2725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
669 | 9, 241, 668 | psrbagleadd1 21886 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
670 | 665, 666,
667, 669 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
671 | | eleq1 2813 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
672 | 670, 671 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
673 | 483, 672 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
674 | 479, 673 | sylbird 259 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
675 | 674 | rexlimdvva 3201 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
676 | 455, 675 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
677 | | elrabi 3673 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
678 | 676, 677 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
679 | 664, 678 | ffvelcdmd 7094 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
680 | 40 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
681 | 14 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
682 | 9, 668 | psrbagconcl 21884 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
683 | 681, 676,
682 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
684 | | elrabi 3673 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
685 | 683, 684 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
686 | 680, 685 | ffvelcdmd 7094 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
687 | 1, 17, 29 | mulgass2 20257 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ((𝑢‘𝑋) ∈ ℤ ∧ (𝐹‘𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅))) → (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
688 | 661, 663,
679, 686, 687 | syl13anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
689 | 660, 688 | eqtrd 2765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
690 | 689 | mpteq2dva 5249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
691 | 609, 690 | eqtrd 2765 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
692 | 691 | oveq2d 7435 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑅 Σg (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
693 | | snex 5433 |
. . . . . . . . . 10
⊢ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ V |
694 | 353, 693 | xpex 7756 |
. . . . . . . . 9
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∈ V |
695 | 694 | funimaex 6642 |
. . . . . . . 8
⊢ (Fun
∘f + → ( ∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V) |
696 | 528, 695 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V) |
697 | 19 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Mnd) |
698 | 1, 29, 661, 679, 686 | ringcld 20211 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
699 | 1, 17, 697, 662, 698 | mulgnn0cld 19058 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
700 | | eqid 2725 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
701 | 357, 700 | fnmpti 6699 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
702 | 701 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
703 | 702, 16, 111 | fndmfifsupp 9403 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
704 | 460 | ad2antlr 725 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑚 Fn dom 𝑚) |
705 | 467 | adantl 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑛 Fn dom 𝑛) |
706 | 470 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑚 ∈ V) |
707 | 473 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑛 ∈ V) |
708 | | eqidd 2726 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑚) → (𝑚‘𝑜) = (𝑚‘𝑜)) |
709 | | eqidd 2726 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑛) → (𝑛‘𝑜) = (𝑛‘𝑜)) |
710 | 704, 705,
706, 707, 475, 708, 709 | offval 7694 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑚 ∘f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
711 | 710 | eqeq2d 2736 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
712 | 711 | rexbidva 3166 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ ∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
713 | 11 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
714 | | oveq2 7427 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑚 ∘f + 𝑛) = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
715 | 714 | eqeq2d 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
716 | 715 | rexsng 4680 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} →
(∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
717 | 713, 716 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
718 | 712, 717 | bitr3d 280 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
719 | 718 | rexbidva 3166 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ↔ ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
720 | | breq1 5152 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
721 | | breq1 5152 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ 𝑑 ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑)) |
722 | | fveq1 6895 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘‘𝑋) = ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋)) |
723 | 722 | eqeq1d 2727 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘‘𝑋) = 0 ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)) |
724 | 721, 723 | anbi12d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
725 | 724 | notbid 317 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
726 | 720, 725 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)) ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))) |
727 | 456, 713,
562 | syl2an2 684 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
728 | | simplr 767 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
729 | | simpr 483 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
730 | 9, 241, 42 | psrbagleadd1 21886 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
731 | 728, 713,
729, 730 | syl3anc 1368 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
732 | 720 | elrab 3679 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
733 | 732 | simprbi 495 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
734 | 731, 733 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
735 | 23 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑋 ∈ 𝐼) |
736 | 485 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚:𝐼⟶ℕ0) |
737 | 736 | ffnd 6724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 Fn 𝐼) |
738 | 131 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
739 | 8 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ 𝑉) |
740 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑚‘𝑋) = (𝑚‘𝑋)) |
741 | 623 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
742 | 737, 738,
739, 739, 70, 740, 741 | ofval 7696 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚‘𝑋) + 1)) |
743 | 735, 742 | mpdan 685 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚‘𝑋) + 1)) |
744 | 736, 735 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚‘𝑋) ∈
ℕ0) |
745 | | nn0p1nn 12544 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚‘𝑋) ∈ ℕ0 → ((𝑚‘𝑋) + 1) ∈ ℕ) |
746 | 744, 745 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚‘𝑋) + 1) ∈ ℕ) |
747 | 743, 746 | eqeltrd 2825 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ∈ ℕ) |
748 | 747 | nnne0d 12295 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ≠ 0) |
749 | 748 | neneqd 2934 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0) |
750 | 749 | intnand 487 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)) |
751 | 734, 750 | jca 510 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
752 | 726, 727,
751 | elrabd 3681 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) |
753 | | eleq1 2813 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
754 | 752, 753 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
755 | | breq1 5152 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ 𝑑 ↔ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑)) |
756 | | elrabi 3673 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
757 | 756 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
758 | 129 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
759 | 756, 121 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢:𝐼⟶ℕ0) |
760 | 759 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢:𝐼⟶ℕ0) |
761 | 23 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑋 ∈ 𝐼) |
762 | 760, 761 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ∈
ℕ0) |
763 | 337 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑘 = 𝑢 → (¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
764 | 116, 763 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)) ↔ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)))) |
765 | 764 | elrab 3679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)))) |
766 | 765 | simprbi 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
767 | 766 | simpld 493 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
768 | 767 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
769 | 768 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
770 | 756, 122 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 Fn 𝐼) |
771 | 770 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 Fn 𝐼) |
772 | 771 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 Fn 𝐼) |
773 | 14 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
774 | 86 | ffnd 6724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
775 | 773, 774 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
776 | 775 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
777 | 8 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝐼 ∈ 𝑉) |
778 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
779 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
780 | 772, 776,
777, 777, 70, 778, 779 | ofrfval 7695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))) |
781 | 769, 780 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
782 | 781 | r19.21bi 3238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
783 | 782 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
784 | 63 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → 𝑑 Fn 𝐼) |
785 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
786 | 8 | ad4antr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → 𝐼 ∈ 𝑉) |
787 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
788 | 76 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
789 | 784, 785,
786, 786, 70, 787, 788 | ofval 7696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
790 | 789 | an32s 650 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
791 | 156 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → if(𝑖 = 𝑋, 1, 0) = 0) |
792 | 791 | oveq2d 7435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + 0)) |
793 | 22 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑑:𝐼⟶ℕ0) |
794 | 793 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
795 | 794 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑑‘𝑖) ∈
ℕ0) |
796 | 795 | nn0cnd 12567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑑‘𝑖) ∈ ℂ) |
797 | 796 | addridd 11446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑‘𝑖) + 0) = (𝑑‘𝑖)) |
798 | 790, 792,
797 | 3eqtrd 2769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = (𝑑‘𝑖)) |
799 | 783, 798 | breqtrd 5175 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
800 | | simpr 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢‘𝑋) = 0) |
801 | 22 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑑:𝐼⟶ℕ0) |
802 | 801, 761 | ffvelcdmd 7094 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑‘𝑋) ∈
ℕ0) |
803 | 802 | nn0ge0d 12568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 0 ≤ (𝑑‘𝑋)) |
804 | 803 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 0 ≤ (𝑑‘𝑋)) |
805 | 800, 804 | eqbrtrd 5171 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
806 | 805 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
807 | 173, 799,
806 | pm2.61ne 3016 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
808 | 807 | ralrimiva 3135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
809 | 63 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑑 Fn 𝐼) |
810 | 809 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑑 Fn 𝐼) |
811 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
812 | 772, 810,
777, 777, 70, 778, 811 | ofrfval 7695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢 ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
813 | 808, 812 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 ∘r ≤ 𝑑) |
814 | 813 | ex 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢‘𝑋) = 0 → 𝑢 ∘r ≤ 𝑑)) |
815 | 766 | simprd 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
816 | 815 | adantl 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
817 | | imnan 398 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑢 ∘r ≤ 𝑑 → ¬ (𝑢‘𝑋) = 0) ↔ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
818 | 816, 817 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘r ≤ 𝑑 → ¬ (𝑢‘𝑋) = 0)) |
819 | 818 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢‘𝑋) = 0 → ¬ 𝑢 ∘r ≤ 𝑑)) |
820 | 814, 819 | pm2.65d 195 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ¬ (𝑢‘𝑋) = 0) |
821 | 820 | neqned 2936 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ≠ 0) |
822 | 762, 821,
189 | sylanbrc 581 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ∈ ℕ) |
823 | 822 | nnge1d 12293 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 1 ≤ (𝑢‘𝑋)) |
824 | 823 | adantr 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → 1 ≤ (𝑢‘𝑋)) |
825 | 171 | breq2d 5161 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑋 → (1 ≤ (𝑢‘𝑖) ↔ 1 ≤ (𝑢‘𝑋))) |
826 | 824, 825 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑖 = 𝑋 → 1 ≤ (𝑢‘𝑖))) |
827 | 826 | imp 405 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 = 𝑋) → 1 ≤ (𝑢‘𝑖)) |
828 | 760 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
829 | 828 | nn0ge0d 12568 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → 0 ≤ (𝑢‘𝑖)) |
830 | 829 | adantr 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 = 𝑋) → 0 ≤ (𝑢‘𝑖)) |
831 | 827, 830 | ifpimpda 1078 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if-(𝑖 = 𝑋, 1 ≤ (𝑢‘𝑖), 0 ≤ (𝑢‘𝑖))) |
832 | | brif1 7517 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖) ↔ if-(𝑖 = 𝑋, 1 ≤ (𝑢‘𝑖), 0 ≤ (𝑢‘𝑖))) |
833 | 831, 832 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖)) |
834 | 833 | ralrimiva 3135 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖)) |
835 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
836 | 8 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝐼 ∈ 𝑉) |
837 | 76 | adantl 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
838 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
839 | 835, 771,
836, 836, 70, 837, 838 | ofrfval 7695 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢 ↔ ∀𝑖 ∈ 𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖))) |
840 | 834, 839 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢) |
841 | 9 | psrbagcon 21880 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑢)) |
842 | 757, 758,
840, 841 | syl3anc 1368 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑢)) |
843 | 842 | simpld 493 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
844 | | eqidd 2726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
845 | 809, 835,
836, 836, 70, 844, 837 | ofval 7696 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
846 | 771, 775,
836, 836, 70, 838, 845 | ofrfval 7695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
847 | 768, 846 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
848 | 847 | r19.21bi 3238 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
849 | 828 | nn0red 12566 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℝ) |
850 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ) |
851 | 801 | ffvelcdmda 7093 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
852 | 851 | nn0red 12566 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℝ) |
853 | 849, 850,
852 | lesubaddd 11843 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖) ↔ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
854 | 848, 853 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖)) |
855 | 854 | ralrimiva 3135 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖)) |
856 | 771, 835,
836, 836, 70 | offn 7698 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
857 | 771, 835,
836, 836, 70, 838, 837 | ofval 7696 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
858 | 856, 809,
836, 836, 70, 857, 844 | ofrfval 7695 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖))) |
859 | 855, 858 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑) |
860 | 755, 843,
859 | elrabd 3681 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
861 | 828 | nn0cnd 12567 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
862 | 235 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
863 | 861, 862 | npcand 11607 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
864 | 863 | mpteq2dva 5249 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
865 | 856, 835,
836, 836, 70, 857, 837 | offval 7694 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)))) |
866 | 760 | feqmptd 6966 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
867 | 864, 865,
866 | 3eqtr4rd 2776 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
868 | | oveq1 7426 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
869 | 868 | eqeq2d 2736 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
870 | 754, 860,
867, 869 | rspceb2dv 3610 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
871 | 454, 719,
870 | 3bitrd 304 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
872 | 871 | eqrdv 2723 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) |
873 | | difrab 4307 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} |
874 | 872, 873 | eqtr4di 2783 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
875 | | difssd 4129 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
876 | 874, 875 | eqsstrd 4015 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
877 | 703, 876,
111 | fmptssfisupp 9419 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
878 | | difss 4128 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
879 | | disjdif 4473 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅ |
880 | | ssdisj 4461 |
. . . . . . . . . 10
⊢ ((({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅) |
881 | 878, 879,
880 | mp2an 690 |
. . . . . . . . 9
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅ |
882 | 881 | ineqcomi 4201 |
. . . . . . . 8
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ∅ |
883 | 882 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ∅) |
884 | 277, 97 | psdmullem 22112 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
885 | 874, 884 | eqtr4d 2768 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}))) |
886 | 1, 102, 2, 6, 696, 699, 877, 883, 885 | gsumsplit2 19896 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
887 | 692, 886 | eqtrd 2765 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
888 | 425, 591,
887 | 3eqtrd 2769 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
889 | 415 | adantr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵) |
890 | 31, 32, 29, 383, 9, 384, 889, 7 | psrmulval 21906 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)))))) |
891 | 3 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ CRing) |
892 | 39 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺 ∈ 𝐵) |
893 | 31, 32, 9, 250, 891, 283, 892, 245 | psdcoef 22107 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
894 | 265 | fveq2d 6900 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) |
895 | 894 | oveq2d 7435 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
896 | 893, 895 | eqtrd 2765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
897 | 896 | oveq2d 7435 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))) = ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
898 | 307 | nn0zd 12617 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈ ℤ) |
899 | 1, 17, 29 | mulgass3 20304 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ ((((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈ ℤ ∧ (𝐹‘𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅))) → ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
900 | 222, 898,
226, 269, 899 | syl13anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
901 | 897, 900 | eqtrd 2765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
902 | 901 | mpteq2dva 5249 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
903 | 902 | oveq2d 7435 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
904 | 1, 2, 6, 219, 319, 273, 280 | gsummptfidmsplit 19897 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
905 | 890, 903,
904 | 3eqtrd 2769 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
906 | 419, 421,
422, 422, 423, 888, 905 | offval 7694 |
. . 3
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f
(+g‘𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
907 | 417, 906 | eqtrd 2765 |
. 2
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
908 | 408, 410,
907 | 3eqtr4d 2775 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))) |