| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 2 | | eqid 2736 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 3 | | psdmul.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 4 | 3 | crngringd 20244 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 5 | 4 | ringcmnd 20282 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd) |
| 7 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 8 | | psdmul.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 9 | | psdmul.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 10 | | psdmul.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑆) |
| 11 | | reldmpsr 21935 |
. . . . . . . . . . . 12
⊢ Rel dom
mPwSer |
| 12 | 9, 10, 11 | strov2rcl 17256 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
| 13 | 8, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ V) |
| 14 | | eqid 2736 |
. . . . . . . . . . 11
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 15 | 14 | psrbagsn 22088 |
. . . . . . . . . 10
⊢ (𝐼 ∈ V → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 16 | 13, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 18 | 14 | psrbagaddcl 21945 |
. . . . . . . 8
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 19 | 7, 17, 18 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 20 | 14 | psrbaglefi 21947 |
. . . . . . 7
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin) |
| 21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin) |
| 22 | | eqid 2736 |
. . . . . . 7
⊢
(.g‘𝑅) = (.g‘𝑅) |
| 23 | 3 | crnggrpd 20245 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 24 | 23 | grpmndd 18965 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 25 | 24 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Mnd) |
| 26 | 14 | psrbagf 21939 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0) |
| 27 | 26 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
| 28 | | psdmul.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 29 | 28 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
| 30 | 27, 29 | ffvelcdmd 7104 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈
ℕ0) |
| 31 | | peano2nn0 12568 |
. . . . . . . . 9
⊢ ((𝑑‘𝑋) ∈ ℕ0 → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
| 32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
| 33 | 32 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
| 34 | | eqid 2736 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 35 | 4 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Ring) |
| 36 | 9, 1, 14, 10, 8 | psrelbas 21955 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 38 | | elrabi 3686 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 40 | 37, 39 | ffvelcdmd 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
| 41 | | psdmul.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 42 | 9, 1, 14, 10, 41 | psrelbas 21955 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 43 | 42 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 44 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
| 45 | 14, 44 | psrbagconcl 21948 |
. . . . . . . . . . 11
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 46 | 19, 45 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 47 | | elrabi 3686 |
. . . . . . . . . 10
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 49 | 43, 48 | ffvelcdmd 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
| 50 | 1, 34, 35, 40, 49 | ringcld 20258 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
| 51 | 1, 22, 25, 33, 50 | mulgnn0cld 19114 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 52 | | disjdifr 4472 |
. . . . . . 7
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = ∅ |
| 53 | 52 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = ∅) |
| 54 | | 1nn0 12544 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ0 |
| 55 | | 0nn0 12543 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
| 56 | 54, 55 | ifcli 4572 |
. . . . . . . . . . . . . . 15
⊢ if(𝑖 = 𝑋, 1, 0) ∈
ℕ0 |
| 57 | 56 | nn0ge0i 12555 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
if(𝑖 = 𝑋, 1, 0) |
| 58 | 27 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
| 59 | 58 | nn0red 12590 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℝ) |
| 60 | 56 | nn0rei 12539 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑖 = 𝑋, 1, 0) ∈ ℝ |
| 61 | 60 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ) |
| 62 | 59, 61 | addge01d 11852 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (0 ≤ if(𝑖 = 𝑋, 1, 0) ↔ (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
| 63 | 57, 62 | mpbii 233 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 64 | 63 | ralrimiva 3145 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
∀𝑖 ∈ 𝐼 (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 65 | 27 | ffnd 6736 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼) |
| 66 | 54, 55 | ifcli 4572 |
. . . . . . . . . . . . . . . . 17
⊢ if(𝑦 = 𝑋, 1, 0) ∈
ℕ0 |
| 67 | 66 | elexi 3502 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑦 = 𝑋, 1, 0) ∈ V |
| 68 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) |
| 69 | 67, 68 | fnmpti 6710 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼 |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 71 | 13 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ V) |
| 72 | | inidm 4226 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 73 | 65, 70, 71, 71, 72 | offn 7711 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 74 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 75 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑖 → (𝑦 = 𝑋 ↔ 𝑖 = 𝑋)) |
| 76 | 75 | ifbid 4548 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0)) |
| 77 | 56 | elexi 3502 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑖 = 𝑋, 1, 0) ∈ V |
| 78 | 76, 68, 77 | fvmpt 7015 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ 𝐼 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 79 | 78 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 80 | 65, 70, 71, 71, 72, 74, 79 | ofval 7709 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 81 | 65, 73, 71, 71, 72, 74, 80 | ofrfval 7708 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
| 82 | 64, 81 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 83 | 82 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 84 | 13 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ V) |
| 85 | 14 | psrbagf 21939 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0) |
| 86 | 85 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) |
| 87 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
| 88 | 14 | psrbagf 21939 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
| 89 | 19, 88 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
| 90 | 89 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
| 91 | | nn0re 12537 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ0
→ 𝑞 ∈
ℝ) |
| 92 | | nn0re 12537 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℕ0
→ 𝑟 ∈
ℝ) |
| 93 | | nn0re 12537 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ0
→ 𝑠 ∈
ℝ) |
| 94 | | letr 11356 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
| 95 | 91, 92, 93, 94 | syl3an 1160 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
| 96 | 95 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0)) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
| 97 | 84, 86, 87, 90, 96 | caoftrn 7739 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∘r ≤ 𝑑 ∧ 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) → 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 98 | 83, 97 | mpan2d 694 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘r ≤ 𝑑 → 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 99 | 98 | ss2rabdv 4075 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 100 | | undifr 4482 |
. . . . . . . 8
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 101 | 99, 100 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 102 | 101 | eqcomd 2742 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 103 | 1, 2, 6, 21, 51, 53, 102 | gsummptfidmsplit 19949 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 104 | | eqid 2736 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 105 | | ovex 7465 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 106 | 105 | rabex 5338 |
. . . . . . . 8
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
| 107 | 106 | rabex 5338 |
. . . . . . 7
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V |
| 108 | 107 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V) |
| 109 | | ovex 7465 |
. . . . . . . . 9
⊢ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ V |
| 110 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
| 111 | 109, 110 | fnmpti 6710 |
. . . . . . . 8
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
| 112 | 111 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 113 | | fvexd 6920 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(0g‘𝑅)
∈ V) |
| 114 | 112, 21, 113 | fndmfifsupp 9419 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) finSupp
(0g‘𝑅)) |
| 115 | 1, 104, 22, 108, 50, 114, 6, 32 | gsummulg 19961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
| 116 | | difrab 4317 |
. . . . . . . . . . 11
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)} |
| 117 | 116 | eleq2i 2832 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)}) |
| 118 | | breq1 5145 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑢 → (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 119 | | breq1 5145 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑢 → (𝑘 ∘r ≤ 𝑑 ↔ 𝑢 ∘r ≤ 𝑑)) |
| 120 | 119 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑢 → (¬ 𝑘 ∘r ≤ 𝑑 ↔ ¬ 𝑢 ∘r ≤ 𝑑)) |
| 121 | 118, 120 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑) ↔ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) |
| 122 | 121 | elrab 3691 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) |
| 123 | 14 | psrbagf 21939 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑢:𝐼⟶ℕ0) |
| 124 | 123 | ffnd 6736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑢 Fn 𝐼) |
| 125 | 124 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢 Fn 𝐼) |
| 126 | 73 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 127 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ V) |
| 128 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
| 129 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼) |
| 130 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝐼 → if(𝑦 = 𝑋, 1, 0) ∈
ℕ0) |
| 131 | 68, 130 | fmpti 7131 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 |
| 132 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
| 133 | 132 | ffnd 6736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 134 | 133 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 135 | | eqidd 2737 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 136 | 78 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 137 | 129, 134,
127, 127, 72, 135, 136 | ofval 7709 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 138 | 125, 126,
127, 127, 72, 128, 137 | ofrfval 7708 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
| 139 | 125, 129,
127, 127, 72, 128, 135 | ofrfval 7708 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 140 | 139 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬
𝑢 ∘r ≤
𝑑 ↔ ¬
∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 141 | | rexnal 3099 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑖 ∈
𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ ¬ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
| 142 | 140, 141 | bitr4di 289 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬
𝑢 ∘r ≤
𝑑 ↔ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 143 | 138, 142 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑) ↔ (∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
| 144 | 30 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) ∈
ℕ0) |
| 145 | 123 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢:𝐼⟶ℕ0) |
| 146 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
| 147 | 145, 146 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈
ℕ0) |
| 148 | 147 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈
ℕ0) |
| 149 | 148 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈
ℕ0) |
| 150 | | nn0nlt0 12554 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑‘𝑋) ∈ ℕ0 → ¬
(𝑑‘𝑋) < 0) |
| 151 | 144, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (𝑑‘𝑋) < 0) |
| 152 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
| 153 | 152 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
| 154 | 153 | nn0cnd 12591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
| 155 | 154 | addridd 11462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑‘𝑖) + 0) = (𝑑‘𝑖)) |
| 156 | 155 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) ↔ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 157 | 156 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 158 | | ifnefalse 4536 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 ≠ 𝑋 → if(𝑖 = 𝑋, 1, 0) = 0) |
| 159 | 158 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑖 ≠ 𝑋 → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + 0)) |
| 160 | 159 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑖 ≠ 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0))) |
| 161 | 160 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ≠ 𝑋 → (((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) ↔ ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
| 162 | 157, 161 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑖 ≠ 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
| 163 | 162 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 164 | 163 | impancom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑖 ≠ 𝑋 → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 165 | 164 | necon1bd 2957 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → 𝑖 = 𝑋)) |
| 166 | 165 | ancrd 551 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
| 167 | 166 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))))) |
| 168 | 167 | ralimdva 3166 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → ∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))))) |
| 169 | 168 | anim1d 611 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → (∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
| 170 | 169 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 171 | | rexim 3086 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → ∃𝑖 ∈ 𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
| 172 | 171 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ∃𝑖 ∈ 𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 173 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑋 → (𝑢‘𝑖) = (𝑢‘𝑋)) |
| 174 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑋 → (𝑑‘𝑖) = (𝑑‘𝑋)) |
| 175 | 173, 174 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 = 𝑋 → ((𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
| 176 | 175 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑋 → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
| 177 | 176 | ceqsrexbv 3655 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑖 ∈
𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) ↔ (𝑋 ∈ 𝐼 ∧ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
| 178 | 177 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑖 ∈
𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
| 179 | 172, 178 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
| 180 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈
ℕ0) |
| 181 | 180 | nn0red 12590 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈ ℝ) |
| 182 | 148 | nn0red 12590 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈ ℝ) |
| 183 | 181, 182 | ltnled 11409 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑‘𝑋) < (𝑢‘𝑋) ↔ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
| 184 | 183 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ ¬
(𝑢‘𝑋) ≤ (𝑑‘𝑋)) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
| 185 | 179, 184 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
| 186 | 170, 185 | syldan 591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
| 187 | | breq2 5146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢‘𝑋) = 0 → ((𝑑‘𝑋) < (𝑢‘𝑋) ↔ (𝑑‘𝑋) < 0)) |
| 188 | 186, 187 | syl5ibcom 245 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑢‘𝑋) = 0 → (𝑑‘𝑋) < 0)) |
| 189 | 151, 188 | mtod 198 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (𝑢‘𝑋) = 0) |
| 190 | 189 | neqned 2946 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ≠ 0) |
| 191 | | elnnne0 12542 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢‘𝑋) ∈ ℕ ↔ ((𝑢‘𝑋) ∈ ℕ0 ∧ (𝑢‘𝑋) ≠ 0)) |
| 192 | 149, 190,
191 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈ ℕ) |
| 193 | | elfzo0 13741 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋)) ↔ ((𝑑‘𝑋) ∈ ℕ0 ∧ (𝑢‘𝑋) ∈ ℕ ∧ (𝑑‘𝑋) < (𝑢‘𝑋))) |
| 194 | 144, 192,
186, 193 | syl3anbrc 1343 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋))) |
| 195 | | fzostep1 13823 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋)) → (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ∨ ((𝑑‘𝑋) + 1) = (𝑢‘𝑋))) |
| 196 | 194, 195 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ∨ ((𝑑‘𝑋) + 1) = (𝑢‘𝑋))) |
| 197 | 149 | nn0red 12590 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈ ℝ) |
| 198 | 32 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
| 199 | 198 | nn0red 12590 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) ∈ ℝ) |
| 200 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
| 201 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑋 → if(𝑖 = 𝑋, 1, 0) = 1) |
| 202 | 174, 201 | oveq12d 7450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑋 → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑋) + 1)) |
| 203 | 173, 202 | breq12d 5155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
| 204 | 203 | rspcv 3617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ 𝐼 → (∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
| 205 | 200, 204 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
| 206 | 205 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1)) |
| 207 | 206 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1)) |
| 208 | 197, 199,
207 | lensymd 11413 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋)) |
| 209 | 208 | intn3an3d 1482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (((𝑑‘𝑋) + 1) ∈ ℕ0 ∧
(𝑢‘𝑋) ∈ ℕ ∧ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋))) |
| 210 | | elfzo0 13741 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ↔ (((𝑑‘𝑋) + 1) ∈ ℕ0 ∧
(𝑢‘𝑋) ∈ ℕ ∧ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋))) |
| 211 | 209, 210 | sylnibr 329 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ ((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋))) |
| 212 | 196, 211 | orcnd 878 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
| 213 | 143, 212 | sylbida 592 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑)) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
| 214 | 213 | anasss 466 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
| 215 | 122, 214 | sylan2b 594 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)}) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
| 216 | 117, 215 | sylan2b 594 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
| 217 | 216 | oveq1d 7447 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 218 | 217 | mpteq2dva 5241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 219 | 218 | oveq2d 7448 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
| 220 | 14 | psrbaglefi 21947 |
. . . . . . . . 9
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ Fin) |
| 221 | 220 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ Fin) |
| 222 | 24 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Mnd) |
| 223 | 32 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
| 224 | 4 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Ring) |
| 225 | | elrabi 3686 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 226 | 36 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 227 | 226 | ffvelcdmda 7103 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
| 228 | 225, 227 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
| 229 | 42 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 230 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑:𝐼⟶ℕ0) |
| 231 | 230 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
| 232 | 231 | nn0cnd 12591 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
| 233 | 225, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑢:𝐼⟶ℕ0) |
| 234 | 233 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢:𝐼⟶ℕ0) |
| 235 | 234 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
| 236 | 235 | nn0cnd 12591 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
| 237 | 56 | nn0cni 12540 |
. . . . . . . . . . . . . . . . 17
⊢ if(𝑖 = 𝑋, 1, 0) ∈ ℂ |
| 238 | 237 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
| 239 | 232, 236,
238 | subadd23d 11643 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢‘𝑖)))) |
| 240 | 232, 238,
236 | addsubassd 11641 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)) = ((𝑑‘𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢‘𝑖)))) |
| 241 | 239, 240 | eqtr4d 2779 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)) = (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖))) |
| 242 | 241 | mpteq2dva 5241 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
| 243 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
| 244 | 14, 243 | psrbagconcl 21948 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 245 | | elrabi 3686 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∘f −
𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 246 | 244, 245 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 247 | 246 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 248 | 14 | psrbagf 21939 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∘f −
𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f −
𝑢):𝐼⟶ℕ0) |
| 249 | 247, 248 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢):𝐼⟶ℕ0) |
| 250 | 249 | ffnd 6736 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) Fn 𝐼) |
| 251 | 69 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 252 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ V) |
| 253 | 230 | ffnd 6736 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 Fn 𝐼) |
| 254 | 234 | ffnd 6736 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢 Fn 𝐼) |
| 255 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 256 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
| 257 | 253, 254,
252, 252, 72, 255, 256 | ofval 7709 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑖) = ((𝑑‘𝑖) − (𝑢‘𝑖))) |
| 258 | 78 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 259 | 250, 251,
252, 252, 72, 257, 258 | offval 7707 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)))) |
| 260 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 261 | 16 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 262 | 260, 261,
18 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 263 | 262, 88 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
| 264 | 263 | ffnd 6736 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 265 | 253, 251,
252, 252, 72, 255, 258 | ofval 7709 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 266 | 264, 254,
252, 252, 72, 265, 256 | offval 7707 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
| 267 | 242, 259,
266 | 3eqtr4d 2786 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) |
| 268 | 14 | psrbagaddcl 21945 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∘f −
𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑 ∘f −
𝑢) ∘f +
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 269 | 247, 261,
268 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 270 | 267, 269 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 271 | 229, 270 | ffvelcdmd 7104 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
| 272 | 1, 34, 224, 228, 271 | ringcld 20258 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
| 273 | 1, 22, 222, 223, 272 | mulgnn0cld 19114 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 274 | | disjdifr 4472 |
. . . . . . . . 9
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = ∅ |
| 275 | 274 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = ∅) |
| 276 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) → 𝑘 ∘r ≤ 𝑑) |
| 277 | 276 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) → 𝑘 ∘r ≤ 𝑑)) |
| 278 | 277 | ss2rabi 4076 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
| 279 | 278 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 280 | | undifr 4482 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↔ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 281 | 279, 280 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 282 | 281 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
| 283 | 1, 2, 6, 221, 273, 275, 282 | gsummptfidmsplit 19949 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 284 | | eldifi 4130 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 285 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑋 ∈ 𝐼) |
| 286 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑑‘𝑋) = (𝑑‘𝑋)) |
| 287 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
| 288 | 253, 254,
252, 252, 72, 286, 287 | ofval 7709 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
| 289 | 285, 288 | mpdan 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
| 290 | 284, 289 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
| 291 | 290 | oveq2d 7448 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) = ((𝑢‘𝑋) + ((𝑑‘𝑋) − (𝑢‘𝑋)))) |
| 292 | 234, 285 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢‘𝑋) ∈
ℕ0) |
| 293 | 284, 292 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑢‘𝑋) ∈
ℕ0) |
| 294 | 293 | nn0cnd 12591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑢‘𝑋) ∈ ℂ) |
| 295 | 30 | nn0cnd 12591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈ ℂ) |
| 296 | 295 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑑‘𝑋) ∈ ℂ) |
| 297 | 294, 296 | pncan3d 11624 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑‘𝑋) − (𝑢‘𝑋))) = (𝑑‘𝑋)) |
| 298 | 291, 297 | eqtrd 2776 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) = (𝑑‘𝑋)) |
| 299 | 298 | oveq1d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) + 1) = ((𝑑‘𝑋) + 1)) |
| 300 | 249, 285 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈
ℕ0) |
| 301 | 284, 300 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈
ℕ0) |
| 302 | 301 | nn0cnd 12591 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈ ℂ) |
| 303 | | 1cnd 11257 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → 1 ∈
ℂ) |
| 304 | 294, 302,
303 | addassd 11284 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) + 1) = ((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))) |
| 305 | 299, 304 | eqtr3d 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑‘𝑋) + 1) = ((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))) |
| 306 | 305 | oveq1d 7447 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 307 | 24 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → 𝑅 ∈ Mnd) |
| 308 | | peano2nn0 12568 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑 ∘f −
𝑢)‘𝑋) ∈ ℕ0 → (((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈
ℕ0) |
| 309 | 300, 308 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈
ℕ0) |
| 310 | 284, 309 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈
ℕ0) |
| 311 | 284, 272 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
| 312 | 1, 22, 2 | mulgnn0dir 19123 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Mnd ∧ ((𝑢‘𝑋) ∈ ℕ0 ∧ (((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈ ℕ0 ∧
((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅))) → (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 313 | 307, 293,
310, 311, 312 | syl13anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 314 | 306, 313 | eqtrd 2776 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 315 | 314 | mpteq2dva 5241 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
| 316 | 315 | oveq2d 7448 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 317 | | difssd 4136 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 318 | 221, 317 | ssfid 9302 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ Fin) |
| 319 | 1, 22, 222, 292, 272 | mulgnn0cld 19114 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 320 | 284, 319 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 321 | 1, 22, 222, 309, 272 | mulgnn0cld 19114 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 322 | 284, 321 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 323 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 324 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 325 | 1, 2, 6, 318, 320, 322, 323, 324 | gsummptfidmadd 19944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 326 | 316, 325 | eqtrd 2776 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 327 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑋 ∈ 𝐼) |
| 328 | 65 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑑 Fn 𝐼) |
| 329 | | elrabi 3686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 330 | 329, 124 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 Fn 𝐼) |
| 331 | 330 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑢 Fn 𝐼) |
| 332 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝐼 ∈ V) |
| 333 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → (𝑑‘𝑋) = (𝑑‘𝑋)) |
| 334 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
| 335 | 328, 331,
332, 332, 72, 333, 334 | ofval 7709 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
| 336 | 327, 335 | mpdan 687 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
| 337 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑢 → (𝑘‘𝑋) = (𝑢‘𝑋)) |
| 338 | 337 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑢 → ((𝑘‘𝑋) = 0 ↔ (𝑢‘𝑋) = 0)) |
| 339 | 119, 338 | anbi12d 632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
| 340 | 339 | elrab 3691 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
| 341 | 340 | simprbi 496 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
| 342 | 341 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → (𝑢‘𝑋) = 0) |
| 343 | 342 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑢‘𝑋) = 0) |
| 344 | 343 | oveq2d 7448 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) − (𝑢‘𝑋)) = ((𝑑‘𝑋) − 0)) |
| 345 | 30 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) ∈
ℕ0) |
| 346 | 345 | nn0cnd 12591 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) ∈ ℂ) |
| 347 | 346 | subid1d 11610 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) − 0) = (𝑑‘𝑋)) |
| 348 | 336, 344,
347 | 3eqtrrd 2781 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) = ((𝑑 ∘f − 𝑢)‘𝑋)) |
| 349 | 348 | oveq1d 7447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) + 1) = (((𝑑 ∘f − 𝑢)‘𝑋) + 1)) |
| 350 | 349 | oveq1d 7447 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 351 | 350 | mpteq2dva 5241 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 352 | 351 | oveq2d 7448 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
| 353 | 326, 352 | oveq12d 7450 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 354 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp) |
| 355 | 106 | rabex 5338 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ V |
| 356 | 355 | difexi 5329 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ V |
| 357 | 356 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ V) |
| 358 | 320 | fmpttd 7134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})⟶(Base‘𝑅)) |
| 359 | | ovex 7465 |
. . . . . . . . . . . 12
⊢ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ V |
| 360 | 359, 323 | fnmpti 6710 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
| 361 | 360 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
| 362 | 361, 318,
113 | fndmfifsupp 9419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
| 363 | 1, 104, 6, 357, 358, 362 | gsumcl 19934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
| 364 | 322 | fmpttd 7134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})⟶(Base‘𝑅)) |
| 365 | | ovex 7465 |
. . . . . . . . . . . 12
⊢ ((((𝑑 ∘f −
𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ V |
| 366 | 365, 324 | fnmpti 6710 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
| 367 | 366 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
| 368 | 367, 318,
113 | fndmfifsupp 9419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
| 369 | 1, 104, 6, 357, 364, 368 | gsumcl 19934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
| 370 | 106 | rabex 5338 |
. . . . . . . . . 10
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ V |
| 371 | 370 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ V) |
| 372 | 278 | sseli 3978 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 373 | 372, 321 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 374 | 373 | fmpttd 7134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}⟶(Base‘𝑅)) |
| 375 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 376 | 365, 375 | fnmpti 6710 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} |
| 377 | 376 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
| 378 | 221, 279 | ssfid 9302 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ Fin) |
| 379 | 377, 378,
113 | fndmfifsupp 9419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
| 380 | 1, 104, 6, 371, 374, 379 | gsumcl 19934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
| 381 | 1, 2, 354, 363, 369, 380 | grpassd 18964 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
| 382 | 283, 353,
381 | 3eqtrd 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
| 383 | 219, 382 | oveq12d 7450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
| 384 | 103, 115,
383 | 3eqtr3d 2784 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
| 385 | | psdmul.m |
. . . . . 6
⊢ · =
(.r‘𝑆) |
| 386 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹 ∈ 𝐵) |
| 387 | 41 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐺 ∈ 𝐵) |
| 388 | 9, 10, 34, 385, 14, 386, 387, 19 | psrmulval 21965 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 389 | 388 | oveq2d 7448 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
| 390 | 107 | difexi 5329 |
. . . . . . 7
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ V |
| 391 | 390 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ V) |
| 392 | | eldifi 4130 |
. . . . . . . 8
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 393 | 38, 123 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢:𝐼⟶ℕ0) |
| 394 | 393 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢:𝐼⟶ℕ0) |
| 395 | 28 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑋 ∈ 𝐼) |
| 396 | 394, 395 | ffvelcdmd 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝑢‘𝑋) ∈
ℕ0) |
| 397 | 1, 22, 25, 396, 50 | mulgnn0cld 19114 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 398 | 392, 397 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 399 | 398 | fmpttd 7134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})⟶(Base‘𝑅)) |
| 400 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 401 | 359, 400 | fnmpti 6710 |
. . . . . . . 8
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 402 | 401 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 403 | | difssd 4136 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 404 | 21, 403 | ssfid 9302 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ Fin) |
| 405 | 402, 404,
113 | fndmfifsupp 9419 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
| 406 | 1, 104, 6, 391, 399, 405 | gsumcl 19934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
| 407 | 1, 2, 354, 369, 380 | grpcld 18966 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) ∈ (Base‘𝑅)) |
| 408 | 1, 2, 354, 406, 363, 407 | grpassd 18964 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
| 409 | 384, 389,
408 | 3eqtr4d 2786 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
| 410 | 409 | mpteq2dva 5241 |
. 2
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
| 411 | 9, 10, 385, 4, 8, 41 | psrmulcl 21967 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
| 412 | 9, 10, 14, 28, 411 | psdval 22164 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 413 | | psdmul.p |
. . . 4
⊢ + =
(+g‘𝑆) |
| 414 | 23 | grpmgmd 18980 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mgm) |
| 415 | 9, 10, 414, 28, 8 | psdcl 22166 |
. . . . 5
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
| 416 | 9, 10, 385, 4, 415, 41 | psrmulcl 21967 |
. . . 4
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∈ 𝐵) |
| 417 | 9, 10, 414, 28, 41 | psdcl 22166 |
. . . . 5
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵) |
| 418 | 9, 10, 385, 4, 8, 417 | psrmulcl 21967 |
. . . 4
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) ∈ 𝐵) |
| 419 | 9, 10, 2, 413, 416, 418 | psradd 21958 |
. . 3
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f
(+g‘𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))) |
| 420 | 9, 1, 14, 10, 416 | psrelbas 21955 |
. . . . 5
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 421 | 420 | ffnd 6736 |
. . . 4
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 422 | 9, 1, 14, 10, 418 | psrelbas 21955 |
. . . . 5
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 423 | 422 | ffnd 6736 |
. . . 4
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 424 | 106 | a1i 11 |
. . . 4
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
| 425 | | inidm 4226 |
. . . 4
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∩ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 426 | 415 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
| 427 | 9, 10, 34, 385, 14, 426, 387, 7 | psrmulval 21965 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = (𝑅 Σg (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))))) |
| 428 | 355 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ V) |
| 429 | 4 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Ring) |
| 430 | | elrabi 3686 |
. . . . . . . . 9
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 431 | 9, 1, 14, 10, 415 | psrelbas 21955 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 432 | 431 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 433 | 432 | ffvelcdmda 7103 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅)) |
| 434 | 430, 433 | sylan2 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅)) |
| 435 | 42 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 436 | 14, 243 | psrbagconcl 21948 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 437 | 436 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 438 | | elrabi 3686 |
. . . . . . . . . 10
⊢ ((𝑑 ∘f −
𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑑 ∘f − 𝑏) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 439 | 437, 438 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 440 | 435, 439 | ffvelcdmd 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘(𝑑 ∘f − 𝑏)) ∈ (Base‘𝑅)) |
| 441 | 1, 34, 429, 434, 440 | ringcld 20258 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) ∈ (Base‘𝑅)) |
| 442 | 441 | fmpttd 7134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))):{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}⟶(Base‘𝑅)) |
| 443 | | ovex 7465 |
. . . . . . . . 9
⊢
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) ∈ V |
| 444 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) = (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) |
| 445 | 443, 444 | fnmpti 6710 |
. . . . . . . 8
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
| 446 | 445 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 447 | 446, 221,
113 | fndmfifsupp 9419 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) finSupp
(0g‘𝑅)) |
| 448 | | eqid 2736 |
. . . . . . 7
⊢ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 449 | | df-of 7698 |
. . . . . . . . . 10
⊢
∘f + = (𝑚
∈ V, 𝑛 ∈ V
↦ (𝑜 ∈ (dom
𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
| 450 | | vex 3483 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
| 451 | 450 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢 ∈ V) |
| 452 | | ssv 4007 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ V |
| 453 | 452 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ V) |
| 454 | | ssv 4007 |
. . . . . . . . . . 11
⊢ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V |
| 455 | 454 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V) |
| 456 | 449, 451,
453, 455 | elimampo 7571 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
| 457 | 456 | biimpa 476 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
| 458 | | elrabi 3686 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 459 | 14 | psrbagf 21939 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑚:𝐼⟶ℕ0) |
| 460 | 459 | ffund 6739 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → Fun 𝑚) |
| 461 | 458, 460 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → Fun 𝑚) |
| 462 | 461 | funfnd 6596 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚 Fn dom 𝑚) |
| 463 | 462 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 Fn dom 𝑚) |
| 464 | | velsn 4641 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ 𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 465 | | funmpt 6603 |
. . . . . . . . . . . . . . . 16
⊢ Fun
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) |
| 466 | | funeq 6585 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (Fun 𝑛 ↔ Fun (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 467 | 465, 466 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → Fun 𝑛) |
| 468 | 467 | funfnd 6596 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → 𝑛 Fn dom 𝑛) |
| 469 | 464, 468 | sylbi 217 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 Fn dom 𝑛) |
| 470 | 469 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑛 Fn dom 𝑛) |
| 471 | | vex 3483 |
. . . . . . . . . . . . . 14
⊢ 𝑚 ∈ V |
| 472 | 471 | dmex 7932 |
. . . . . . . . . . . . 13
⊢ dom 𝑚 ∈ V |
| 473 | 472 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑚 ∈ V) |
| 474 | | vex 3483 |
. . . . . . . . . . . . . 14
⊢ 𝑛 ∈ V |
| 475 | 474 | dmex 7932 |
. . . . . . . . . . . . 13
⊢ dom 𝑛 ∈ V |
| 476 | 475 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑛 ∈ V) |
| 477 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (dom
𝑚 ∩ dom 𝑛) = (dom 𝑚 ∩ dom 𝑛) |
| 478 | | eqidd 2737 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑚) → (𝑚‘𝑜) = (𝑚‘𝑜)) |
| 479 | | eqidd 2737 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑛) → (𝑛‘𝑜) = (𝑛‘𝑜)) |
| 480 | 463, 470,
473, 476, 477, 478, 479 | offval 7707 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
| 481 | 480 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
| 482 | | elsni 4642 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 483 | 482 | oveq2d 7448 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑚 ∘f + 𝑛) = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 484 | 483 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 485 | 484 | ad2antll 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 486 | 13 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ V) |
| 487 | 458, 459 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚:𝐼⟶ℕ0) |
| 488 | 487 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚:𝐼⟶ℕ0) |
| 489 | 131 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
| 490 | | nn0cn 12538 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 ∈ ℕ0
→ 𝑞 ∈
ℂ) |
| 491 | | nn0cn 12538 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℕ0
→ 𝑟 ∈
ℂ) |
| 492 | | nn0cn 12538 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ ℕ0
→ 𝑠 ∈
ℂ) |
| 493 | | addsubass 11519 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
| 494 | 490, 491,
492, 493 | syl3an 1160 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
| 495 | 494 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ (𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0
∧ 𝑠 ∈
ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
| 496 | 486, 488,
489, 489, 495 | caofass 7738 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 497 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
| 498 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈
ℕ0) |
| 499 | 68, 76, 497, 498 | fvmptd3 7038 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 500 | 133, 133,
13, 13, 72, 499, 499 | offval 7707 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) |
| 501 | 500 | oveq2d 7448 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
| 502 | 501 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
| 503 | 237 | subidi 11581 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)) = 0 |
| 504 | 503 | mpteq2i 5246 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ 0) |
| 505 | | fconstmpt 5746 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 × {0}) = (𝑖 ∈ 𝐼 ↦ 0) |
| 506 | 504, 505 | eqtr4i 2767 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝐼 × {0}) |
| 507 | 506 | oveq2i 7443 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝐼 × {0})) |
| 508 | | 0zd 12627 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 0 ∈
ℤ) |
| 509 | 490 | addridd 11462 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 ∈ ℕ0
→ (𝑞 + 0) = 𝑞) |
| 510 | 509 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑞 ∈ ℕ0) → (𝑞 + 0) = 𝑞) |
| 511 | 486, 488,
508, 510 | caofid0r 7732 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝐼 × {0})) = 𝑚) |
| 512 | 507, 511 | eqtrid 2788 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚) |
| 513 | 496, 502,
512 | 3eqtrd 2780 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚) |
| 514 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 515 | 513, 514 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 516 | | oveq1 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 517 | 516 | eleq1d 2825 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 518 | 515, 517 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 519 | 518 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 520 | 485, 519 | sylbid 240 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 521 | 481, 520 | sylbird 260 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 522 | 521 | rexlimdvva 3212 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 523 | 457, 522 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 524 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 525 | 13 | mptexd 7245 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V) |
| 526 | | elsng 4639 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 527 | 525, 526 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 528 | 68, 527 | mpbiri 258 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) |
| 529 | 528 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) |
| 530 | 449 | mpofun 7558 |
. . . . . . . . 9
⊢ Fun
∘f + |
| 531 | 530 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → Fun
∘f + ) |
| 532 | | xpss 5700 |
. . . . . . . . 9
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ (V ×
V) |
| 533 | 472 | inex1 5316 |
. . . . . . . . . . . 12
⊢ (dom
𝑚 ∩ dom 𝑛) ∈ V |
| 534 | 533 | mptex 7244 |
. . . . . . . . . . 11
⊢ (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V |
| 535 | 534 | rgen2w 3065 |
. . . . . . . . . 10
⊢
∀𝑚 ∈ V
∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V |
| 536 | 449 | dmmpoga 8099 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈ V
∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V → dom ∘f +
= (V × V)) |
| 537 | 535, 536 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → dom
∘f + = (V × V)) |
| 538 | 532, 537 | sseqtrrid 4026 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ dom ∘f +
) |
| 539 | 524, 529,
531, 538 | elovimad 7482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) |
| 540 | 13 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝐼 ∈ V) |
| 541 | | elrabi 3686 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 542 | 14 | psrbagf 21939 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑣:𝐼⟶ℕ0) |
| 543 | 541, 542 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑣:𝐼⟶ℕ0) |
| 544 | 543 | ad2antll 729 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑣:𝐼⟶ℕ0) |
| 545 | 131 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
| 546 | 494 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ (𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0
∧ 𝑠 ∈
ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
| 547 | 540, 544,
545, 545, 546 | caofass 7738 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑣 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 548 | 133 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 549 | 78 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 550 | 548, 548,
540, 540, 72, 549, 549 | offval 7707 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) |
| 551 | 550 | oveq2d 7448 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
| 552 | 506 | oveq2i 7443 |
. . . . . . . . . . 11
⊢ (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑣 ∘f + (𝐼 × {0})) |
| 553 | | 0zd 12627 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 0 ∈
ℤ) |
| 554 | | nn0cn 12538 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℕ0
→ 𝑝 ∈
ℂ) |
| 555 | 554 | addridd 11462 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℕ0
→ (𝑝 + 0) = 𝑝) |
| 556 | 555 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝) |
| 557 | 540, 544,
553, 556 | caofid0r 7732 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + (𝐼 × {0})) = 𝑣) |
| 558 | 552, 557 | eqtrid 2788 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑣) |
| 559 | 547, 551,
558 | 3eqtrrd 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑣 = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 560 | | oveq1 7439 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 561 | 560 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 562 | 559, 561 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 563 | 16 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 564 | 14 | psrbagaddcl 21945 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 565 | 458, 563,
564 | syl2an2 686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 566 | 14 | psrbagf 21939 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
| 567 | 565, 566 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
| 568 | 567 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
| 569 | | feq1 6715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢:𝐼⟶ℕ0 ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)) |
| 570 | 568, 569 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢:𝐼⟶ℕ0)) |
| 571 | 485, 570 | sylbid 240 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → 𝑢:𝐼⟶ℕ0)) |
| 572 | 481, 571 | sylbird 260 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢:𝐼⟶ℕ0)) |
| 573 | 572 | rexlimdvva 3212 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢:𝐼⟶ℕ0)) |
| 574 | 457, 573 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℕ0) |
| 575 | 574 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢:𝐼⟶ℕ0) |
| 576 | 575 | ffvelcdmda 7103 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
| 577 | 576 | nn0cnd 12591 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
| 578 | 237 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
| 579 | 577, 578 | npcand 11625 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
| 580 | 579 | mpteq2dva 5241 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
| 581 | 575 | ffnd 6736 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 Fn 𝐼) |
| 582 | 581, 548,
540, 540, 72 | offn 7711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 583 | | eqidd 2737 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
| 584 | 581, 548,
540, 540, 72, 583, 549 | ofval 7709 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
| 585 | 582, 548,
540, 540, 72, 584, 549 | offval 7707 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)))) |
| 586 | 575 | feqmptd 6976 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
| 587 | 580, 585,
586 | 3eqtr4rd 2787 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 588 | | oveq1 7439 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 589 | 588 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 590 | 587, 589 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 591 | 562, 590 | impbid 212 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 592 | 448, 523,
539, 591 | f1o2d 7688 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))–1-1-onto→{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 593 | 1, 104, 6, 428, 442, 447, 592 | gsumf1o 19935 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))))) = (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 594 | 555 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝) |
| 595 | 486, 488,
508, 594 | caofid0r 7732 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝐼 × {0})) = 𝑚) |
| 596 | 507, 595 | eqtrid 2788 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚) |
| 597 | 496, 502,
596 | 3eqtrd 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚) |
| 598 | 597, 514 | eqeltrd 2840 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 599 | 598, 517 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 600 | 599 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 601 | 485, 600 | sylbid 240 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 602 | 481, 601 | sylbird 260 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 603 | 602 | rexlimdvva 3212 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
| 604 | 457, 603 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 605 | | eqidd 2737 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 606 | | eqidd 2737 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) = (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))))) |
| 607 | | fveq2 6905 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 608 | | oveq2 7440 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑑 ∘f − 𝑏) = (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 609 | 608 | fveq2d 6909 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐺‘(𝑑 ∘f − 𝑏)) = (𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 610 | 607, 609 | oveq12d 7450 |
. . . . . . . . 9
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
| 611 | 604, 605,
606, 610 | fmptco 7148 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
| 612 | 28 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑋 ∈ 𝐼) |
| 613 | 8 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹 ∈ 𝐵) |
| 614 | | elrabi 3686 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 615 | 604, 614 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 616 | 9, 10, 14, 612, 613, 615 | psdcoef 22165 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g‘𝑅)(𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 617 | 574 | ffnd 6736 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 Fn 𝐼) |
| 618 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
| 619 | 618 | ffnd 6736 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 620 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐼 ∈ V) |
| 621 | | eqidd 2737 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
| 622 | | iftrue 4530 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1) |
| 623 | | 1ex 11258 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
V |
| 624 | 622, 68, 623 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ 𝐼 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
| 625 | 624 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
| 626 | 617, 619,
620, 620, 72, 621, 625 | ofval 7709 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢‘𝑋) − 1)) |
| 627 | 612, 626 | mpdan 687 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢‘𝑋) − 1)) |
| 628 | 627 | oveq1d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (((𝑢‘𝑋) − 1) + 1)) |
| 629 | | nn0sscn 12533 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 ⊆ ℂ |
| 630 | 629 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ℕ0
⊆ ℂ) |
| 631 | 574, 630 | fssd 6752 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℂ) |
| 632 | 631, 612 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈ ℂ) |
| 633 | | 1cnd 11257 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 1 ∈
ℂ) |
| 634 | 632, 633 | npcand 11625 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢‘𝑋) − 1) + 1) = (𝑢‘𝑋)) |
| 635 | 628, 634 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (𝑢‘𝑋)) |
| 636 | 617, 619,
620, 620, 72 | offn 7711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 637 | | eqidd 2737 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
| 638 | 78 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 639 | 617, 619,
620, 620, 72, 637, 638 | ofval 7709 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
| 640 | 574 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
| 641 | 640 | nn0cnd 12591 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
| 642 | 237 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
| 643 | 641, 642 | npcand 11625 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
| 644 | 620, 636,
619, 617, 639, 638, 643 | offveq 7724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑢) |
| 645 | 644 | fveq2d 6909 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘𝑢)) |
| 646 | 635, 645 | oveq12d 7450 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g‘𝑅)(𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))) |
| 647 | 616, 646 | eqtrd 2776 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))) |
| 648 | 26 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑:𝐼⟶ℕ0) |
| 649 | 648 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
| 650 | 649 | nn0cnd 12591 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
| 651 | 650, 641,
642 | subsub3d 11651 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) = (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖))) |
| 652 | 651 | mpteq2dva 5241 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
| 653 | 65 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑 Fn 𝐼) |
| 654 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 655 | 653, 636,
620, 620, 72, 654, 639 | offval 7707 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))))) |
| 656 | 653, 619,
620, 620, 72 | offn 7711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 657 | 653, 619,
620, 620, 72, 654, 638 | ofval 7709 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 658 | 656, 617,
620, 620, 72, 657, 637 | offval 7707 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
| 659 | 652, 655,
658 | 3eqtr4d 2786 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) |
| 660 | 659 | fveq2d 6909 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) |
| 661 | 647, 660 | oveq12d 7450 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
| 662 | 4 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Ring) |
| 663 | 574, 612 | ffvelcdmd 7104 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈
ℕ0) |
| 664 | 663 | nn0zd 12641 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈ ℤ) |
| 665 | 36 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 666 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 667 | 16 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 668 | | simprl 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 669 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
| 670 | 14, 243, 669 | psrbagleadd1 21949 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 671 | 666, 667,
668, 670 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 672 | | eleq1 2828 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
| 673 | 671, 672 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
| 674 | 485, 673 | sylbid 240 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
| 675 | 481, 674 | sylbird 260 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
| 676 | 675 | rexlimdvva 3212 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
| 677 | 457, 676 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 678 | | elrabi 3686 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 679 | 677, 678 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 680 | 665, 679 | ffvelcdmd 7104 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
| 681 | 42 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
| 682 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 683 | 14, 669 | psrbagconcl 21948 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 684 | 682, 677,
683 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 685 | | elrabi 3686 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 686 | 684, 685 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 687 | 681, 686 | ffvelcdmd 7104 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
| 688 | 1, 22, 34 | mulgass2 20307 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ((𝑢‘𝑋) ∈ ℤ ∧ (𝐹‘𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅))) → (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 689 | 662, 664,
680, 687, 688 | syl13anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 690 | 661, 689 | eqtrd 2776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 691 | 690 | mpteq2dva 5241 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 692 | 611, 691 | eqtrd 2776 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 693 | 692 | oveq2d 7448 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑅 Σg (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
| 694 | | snex 5435 |
. . . . . . . . . 10
⊢ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ V |
| 695 | 355, 694 | xpex 7774 |
. . . . . . . . 9
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∈ V |
| 696 | 695 | funimaex 6654 |
. . . . . . . 8
⊢ (Fun
∘f + → ( ∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V) |
| 697 | 530, 696 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V) |
| 698 | 24 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Mnd) |
| 699 | 1, 34, 662, 680, 687 | ringcld 20258 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
| 700 | 1, 22, 698, 663, 699 | mulgnn0cld 19114 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
| 701 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 702 | 359, 701 | fnmpti 6710 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
| 703 | 702 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 704 | 703, 21, 113 | fndmfifsupp 9419 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
| 705 | 462 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑚 Fn dom 𝑚) |
| 706 | 469 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑛 Fn dom 𝑛) |
| 707 | 472 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑚 ∈ V) |
| 708 | 475 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑛 ∈ V) |
| 709 | | eqidd 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑚) → (𝑚‘𝑜) = (𝑚‘𝑜)) |
| 710 | | eqidd 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑛) → (𝑛‘𝑜) = (𝑛‘𝑜)) |
| 711 | 705, 706,
707, 708, 477, 709, 710 | offval 7707 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑚 ∘f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
| 712 | 711 | eqeq2d 2747 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
| 713 | 712 | rexbidva 3176 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ ∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
| 714 | 16 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 715 | | oveq2 7440 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑚 ∘f + 𝑛) = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 716 | 715 | eqeq2d 2747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 717 | 716 | rexsng 4675 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} →
(∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 718 | 714, 717 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 719 | 713, 718 | bitr3d 281 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 720 | 719 | rexbidva 3176 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ↔ ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 721 | | breq1 5145 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 722 | | breq1 5145 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ 𝑑 ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑)) |
| 723 | | fveq1 6904 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘‘𝑋) = ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋)) |
| 724 | 723 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘‘𝑋) = 0 ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)) |
| 725 | 722, 724 | anbi12d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
| 726 | 725 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
| 727 | 721, 726 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)) ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))) |
| 728 | 458, 714,
564 | syl2an2 686 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 729 | | simplr 768 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 730 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 731 | 14, 243, 44 | psrbagleadd1 21949 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 732 | 729, 714,
730, 731 | syl3anc 1372 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 733 | 721 | elrab 3691 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 734 | 733 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 735 | 732, 734 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 736 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑋 ∈ 𝐼) |
| 737 | 487 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚:𝐼⟶ℕ0) |
| 738 | 737 | ffnd 6736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 Fn 𝐼) |
| 739 | 133 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 740 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ V) |
| 741 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑚‘𝑋) = (𝑚‘𝑋)) |
| 742 | 624 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
| 743 | 738, 739,
740, 740, 72, 741, 742 | ofval 7709 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚‘𝑋) + 1)) |
| 744 | 736, 743 | mpdan 687 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚‘𝑋) + 1)) |
| 745 | 737, 736 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚‘𝑋) ∈
ℕ0) |
| 746 | | nn0p1nn 12567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚‘𝑋) ∈ ℕ0 → ((𝑚‘𝑋) + 1) ∈ ℕ) |
| 747 | 745, 746 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚‘𝑋) + 1) ∈ ℕ) |
| 748 | 744, 747 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ∈ ℕ) |
| 749 | 748 | nnne0d 12317 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ≠ 0) |
| 750 | 749 | neneqd 2944 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0) |
| 751 | 750 | intnand 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)) |
| 752 | 735, 751 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
| 753 | 727, 728,
752 | elrabd 3693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) |
| 754 | | eleq1 2828 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
| 755 | 753, 754 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
| 756 | | breq1 5145 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ 𝑑 ↔ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑)) |
| 757 | | elrabi 3686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 758 | 757 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 759 | 131 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
| 760 | 757, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢:𝐼⟶ℕ0) |
| 761 | 760 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢:𝐼⟶ℕ0) |
| 762 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑋 ∈ 𝐼) |
| 763 | 761, 762 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ∈
ℕ0) |
| 764 | 339 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑘 = 𝑢 → (¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
| 765 | 118, 764 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)) ↔ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)))) |
| 766 | 765 | elrab 3691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)))) |
| 767 | 766 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
| 768 | 767 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 769 | 768 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 770 | 769 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 771 | 757, 124 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 Fn 𝐼) |
| 772 | 771 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 Fn 𝐼) |
| 773 | 772 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 Fn 𝐼) |
| 774 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 775 | 88 | ffnd 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 776 | 774, 775 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 777 | 776 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 778 | 13 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝐼 ∈ V) |
| 779 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
| 780 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
| 781 | 773, 777,
778, 778, 72, 779, 780 | ofrfval 7708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))) |
| 782 | 770, 781 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
| 783 | 782 | r19.21bi 3250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
| 784 | 783 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
| 785 | 65 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → 𝑑 Fn 𝐼) |
| 786 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 787 | 13 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → 𝐼 ∈ V) |
| 788 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 789 | 78 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 790 | 785, 786,
787, 787, 72, 788, 789 | ofval 7709 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 791 | 790 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 792 | 158 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → if(𝑖 = 𝑋, 1, 0) = 0) |
| 793 | 792 | oveq2d 7448 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + 0)) |
| 794 | 27 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑑:𝐼⟶ℕ0) |
| 795 | 794 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
| 796 | 795 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑑‘𝑖) ∈
ℕ0) |
| 797 | 796 | nn0cnd 12591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑑‘𝑖) ∈ ℂ) |
| 798 | 797 | addridd 11462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑‘𝑖) + 0) = (𝑑‘𝑖)) |
| 799 | 791, 793,
798 | 3eqtrd 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = (𝑑‘𝑖)) |
| 800 | 784, 799 | breqtrd 5168 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
| 801 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢‘𝑋) = 0) |
| 802 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑑:𝐼⟶ℕ0) |
| 803 | 802, 762 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑‘𝑋) ∈
ℕ0) |
| 804 | 803 | nn0ge0d 12592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 0 ≤ (𝑑‘𝑋)) |
| 805 | 804 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 0 ≤ (𝑑‘𝑋)) |
| 806 | 801, 805 | eqbrtrd 5164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
| 807 | 806 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
| 808 | 175, 800,
807 | pm2.61ne 3026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
| 809 | 808 | ralrimiva 3145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
| 810 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑑 Fn 𝐼) |
| 811 | 810 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑑 Fn 𝐼) |
| 812 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 813 | 773, 811,
778, 778, 72, 779, 812 | ofrfval 7708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢 ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
| 814 | 809, 813 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 ∘r ≤ 𝑑) |
| 815 | 814 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢‘𝑋) = 0 → 𝑢 ∘r ≤ 𝑑)) |
| 816 | 767 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
| 817 | 816 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
| 818 | | imnan 399 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑢 ∘r ≤ 𝑑 → ¬ (𝑢‘𝑋) = 0) ↔ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
| 819 | 817, 818 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘r ≤ 𝑑 → ¬ (𝑢‘𝑋) = 0)) |
| 820 | 819 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢‘𝑋) = 0 → ¬ 𝑢 ∘r ≤ 𝑑)) |
| 821 | 815, 820 | pm2.65d 196 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ¬ (𝑢‘𝑋) = 0) |
| 822 | 821 | neqned 2946 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ≠ 0) |
| 823 | 763, 822,
191 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ∈ ℕ) |
| 824 | 823 | nnge1d 12315 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 1 ≤ (𝑢‘𝑋)) |
| 825 | 824 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → 1 ≤ (𝑢‘𝑋)) |
| 826 | 173 | breq2d 5154 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑋 → (1 ≤ (𝑢‘𝑖) ↔ 1 ≤ (𝑢‘𝑋))) |
| 827 | 825, 826 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑖 = 𝑋 → 1 ≤ (𝑢‘𝑖))) |
| 828 | 827 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 = 𝑋) → 1 ≤ (𝑢‘𝑖)) |
| 829 | 761 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
| 830 | 829 | nn0ge0d 12592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → 0 ≤ (𝑢‘𝑖)) |
| 831 | 830 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 = 𝑋) → 0 ≤ (𝑢‘𝑖)) |
| 832 | 828, 831 | ifpimpda 1080 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if-(𝑖 = 𝑋, 1 ≤ (𝑢‘𝑖), 0 ≤ (𝑢‘𝑖))) |
| 833 | | brif1 7531 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖) ↔ if-(𝑖 = 𝑋, 1 ≤ (𝑢‘𝑖), 0 ≤ (𝑢‘𝑖))) |
| 834 | 832, 833 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖)) |
| 835 | 834 | ralrimiva 3145 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖)) |
| 836 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
| 837 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝐼 ∈ V) |
| 838 | 78 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
| 839 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
| 840 | 836, 772,
837, 837, 72, 838, 839 | ofrfval 7708 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢 ↔ ∀𝑖 ∈ 𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖))) |
| 841 | 835, 840 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢) |
| 842 | 14 | psrbagcon 21946 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑢)) |
| 843 | 758, 759,
841, 842 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑢)) |
| 844 | 843 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 845 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 846 | 810, 836,
837, 837, 72, 845, 838 | ofval 7709 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 847 | 772, 776,
837, 837, 72, 839, 846 | ofrfval 7708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
| 848 | 769, 847 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 849 | 848 | r19.21bi 3250 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
| 850 | 829 | nn0red 12590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℝ) |
| 851 | 60 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ) |
| 852 | 802 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
| 853 | 852 | nn0red 12590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℝ) |
| 854 | 850, 851,
853 | lesubaddd 11861 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖) ↔ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
| 855 | 849, 854 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖)) |
| 856 | 855 | ralrimiva 3145 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖)) |
| 857 | 772, 836,
837, 837, 72 | offn 7711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
| 858 | 772, 836,
837, 837, 72, 839, 838 | ofval 7709 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
| 859 | 857, 810,
837, 837, 72, 858, 845 | ofrfval 7708 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖))) |
| 860 | 856, 859 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑) |
| 861 | 756, 844,
860 | elrabd 3693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
| 862 | 829 | nn0cnd 12591 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
| 863 | 237 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
| 864 | 862, 863 | npcand 11625 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
| 865 | 864 | mpteq2dva 5241 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
| 866 | 857, 836,
837, 837, 72, 858, 838 | offval 7707 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)))) |
| 867 | 761 | feqmptd 6976 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
| 868 | 865, 866,
867 | 3eqtr4rd 2787 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 869 | | oveq1 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 870 | 869 | eqeq2d 2747 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
| 871 | 755, 861,
868, 870 | rspceb2dv 3625 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
| 872 | 456, 720,
871 | 3bitrd 305 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
| 873 | 872 | eqrdv 2734 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) |
| 874 | | difrab 4317 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} |
| 875 | 873, 874 | eqtr4di 2794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
| 876 | | difssd 4136 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 877 | 875, 876 | eqsstrd 4017 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
| 878 | 704, 877,
113 | fmptssfisupp 9435 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
| 879 | | difss 4135 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
| 880 | | disjdif 4471 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅ |
| 881 | | ssdisj 4459 |
. . . . . . . . . 10
⊢ ((({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅) |
| 882 | 879, 880,
881 | mp2an 692 |
. . . . . . . . 9
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅ |
| 883 | 882 | ineqcomi 4210 |
. . . . . . . 8
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ∅ |
| 884 | 883 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ∅) |
| 885 | 279, 99 | psdmullem 22170 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
| 886 | 875, 885 | eqtr4d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}))) |
| 887 | 1, 104, 2, 6, 697, 700, 878, 884, 886 | gsumsplit2 19948 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 888 | 693, 887 | eqtrd 2776 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 889 | 427, 593,
888 | 3eqtrd 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 890 | 417 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵) |
| 891 | 9, 10, 34, 385, 14, 386, 890, 7 | psrmulval 21965 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)))))) |
| 892 | 41 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺 ∈ 𝐵) |
| 893 | 9, 10, 14, 285, 892, 247 | psdcoef 22165 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
| 894 | 267 | fveq2d 6909 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) |
| 895 | 894 | oveq2d 7448 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
| 896 | 893, 895 | eqtrd 2776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
| 897 | 896 | oveq2d 7448 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))) = ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 898 | 309 | nn0zd 12641 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈ ℤ) |
| 899 | 1, 22, 34 | mulgass3 20354 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ ((((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈ ℤ ∧ (𝐹‘𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅))) → ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 900 | 224, 898,
228, 271, 899 | syl13anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 901 | 897, 900 | eqtrd 2776 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
| 902 | 901 | mpteq2dva 5241 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
| 903 | 902 | oveq2d 7448 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
| 904 | 1, 2, 6, 221, 321, 275, 282 | gsummptfidmsplit 19949 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 905 | 891, 903,
904 | 3eqtrd 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
| 906 | 421, 423,
424, 424, 425, 889, 905 | offval 7707 |
. . 3
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f
(+g‘𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
| 907 | 419, 906 | eqtrd 2776 |
. 2
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
| 908 | 410, 412,
907 | 3eqtr4d 2786 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))) |