MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmul Structured version   Visualization version   GIF version

Theorem psdmul 22082
Description: Product rule for power series. An outline is available at https://github.com/icecream17/Stuff/blob/main/math/psdmul.pdf. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psdmul.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmul.b 𝐵 = (Base‘𝑆)
psdmul.p + = (+g𝑆)
psdmul.m · = (.r𝑆)
psdmul.r (𝜑𝑅 ∈ CRing)
psdmul.x (𝜑𝑋𝐼)
psdmul.f (𝜑𝐹𝐵)
psdmul.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdmul (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))

Proof of Theorem psdmul
Dummy variables 𝑏 𝑑 𝑖 𝑘 𝑚 𝑛 𝑜 𝑝 𝑞 𝑟 𝑠 𝑢 𝑣 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2733 . . . . . 6 (+g𝑅) = (+g𝑅)
3 psdmul.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43crngringd 20166 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
54ringcmnd 20204 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
7 simpr 484 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8 psdmul.f . . . . . . . . . . 11 (𝜑𝐹𝐵)
9 psdmul.s . . . . . . . . . . . 12 𝑆 = (𝐼 mPwSer 𝑅)
10 psdmul.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
11 reldmpsr 21853 . . . . . . . . . . . 12 Rel dom mPwSer
129, 10, 11strov2rcl 17130 . . . . . . . . . . 11 (𝐹𝐵𝐼 ∈ V)
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐼 ∈ V)
14 eqid 2733 . . . . . . . . . . 11 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1514psrbagsn 21999 . . . . . . . . . 10 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1613, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1716adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1814psrbagaddcl 21863 . . . . . . . 8 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
197, 17, 18syl2anc 584 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2014psrbaglefi 21865 . . . . . . 7 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
2119, 20syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
22 eqid 2733 . . . . . . 7 (.g𝑅) = (.g𝑅)
233crnggrpd 20167 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2423grpmndd 18861 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
2524ad2antrr 726 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Mnd)
2614psrbagf 21857 . . . . . . . . . . 11 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
28 psdmul.x . . . . . . . . . . 11 (𝜑𝑋𝐼)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
3027, 29ffvelcdmd 7024 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
31 peano2nn0 12428 . . . . . . . . 9 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
3230, 31syl 17 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
3332adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑𝑋) + 1) ∈ ℕ0)
34 eqid 2733 . . . . . . . 8 (.r𝑅) = (.r𝑅)
354ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Ring)
369, 1, 14, 10, 8psrelbas 21873 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
3736ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
38 elrabi 3639 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3938adantl 481 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4037, 39ffvelcdmd 7024 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐹𝑢) ∈ (Base‘𝑅))
41 psdmul.g . . . . . . . . . . 11 (𝜑𝐺𝐵)
429, 1, 14, 10, 41psrelbas 21873 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4342ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
44 eqid 2733 . . . . . . . . . . . 12 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
4514, 44psrbagconcl 21866 . . . . . . . . . . 11 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
4619, 45sylan 580 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
47 elrabi 3639 . . . . . . . . . 10 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4846, 47syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4943, 48ffvelcdmd 7024 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
501, 34, 35, 40, 49ringcld 20180 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
511, 22, 25, 33, 50mulgnn0cld 19010 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
52 disjdifr 4422 . . . . . . 7 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅
5352a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅)
54 1nn0 12404 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
55 0nn0 12403 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
5654, 55ifcli 4522 . . . . . . . . . . . . . . 15 if(𝑖 = 𝑋, 1, 0) ∈ ℕ0
5756nn0ge0i 12415 . . . . . . . . . . . . . 14 0 ≤ if(𝑖 = 𝑋, 1, 0)
5827ffvelcdmda 7023 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
5958nn0red 12450 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
6056nn0rei 12399 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
6259, 61addge01d 11712 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (0 ≤ if(𝑖 = 𝑋, 1, 0) ↔ (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
6357, 62mpbii 233 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6463ralrimiva 3125 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6527ffnd 6657 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
6654, 55ifcli 4522 . . . . . . . . . . . . . . . . 17 if(𝑦 = 𝑋, 1, 0) ∈ ℕ0
6766elexi 3460 . . . . . . . . . . . . . . . 16 if(𝑦 = 𝑋, 1, 0) ∈ V
68 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
6967, 68fnmpti 6629 . . . . . . . . . . . . . . 15 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
7069a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7113adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
72 inidm 4176 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
7365, 70, 71, 71, 72offn 7629 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
74 eqidd 2734 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
75 eqeq1 2737 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑖 → (𝑦 = 𝑋𝑖 = 𝑋))
7675ifbid 4498 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0))
7756elexi 3460 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ V
7876, 68, 77fvmpt 6935 . . . . . . . . . . . . . . 15 (𝑖𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
7978adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
8065, 70, 71, 71, 72, 74, 79ofval 7627 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
8165, 73, 71, 71, 72, 74, 80ofrfval 7626 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
8264, 81mpbird 257 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8382adantr 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8413ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
8514psrbagf 21857 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
8685adantl 481 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
8727adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
8814psrbagf 21857 . . . . . . . . . . . . 13 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
8919, 88syl 17 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
9089adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
91 nn0re 12397 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ0𝑞 ∈ ℝ)
92 nn0re 12397 . . . . . . . . . . . . 13 (𝑟 ∈ ℕ0𝑟 ∈ ℝ)
93 nn0re 12397 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
94 letr 11214 . . . . . . . . . . . . 13 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9591, 92, 93, 94syl3an 1160 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9695adantl 481 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9784, 86, 87, 90, 96caoftrn 7657 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘r𝑑𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) → 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9883, 97mpan2d 694 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘r𝑑𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9998ss2rabdv 4024 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
100 undifr 4432 . . . . . . . 8 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
10199, 100sylib 218 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
102101eqcomd 2739 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
1031, 2, 6, 21, 51, 53, 102gsummptfidmsplit 19844 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
104 eqid 2733 . . . . . 6 (0g𝑅) = (0g𝑅)
105 ovex 7385 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
106105rabex 5279 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
107106rabex 5279 . . . . . . 7 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V
108107a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V)
109 ovex 7385 . . . . . . . . 9 ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ V
110 eqid 2733 . . . . . . . . 9 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
111109, 110fnmpti 6629 . . . . . . . 8 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
112111a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
113 fvexd 6843 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
114112, 21, 113fndmfifsupp 9269 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) finSupp (0g𝑅))
1151, 104, 22, 108, 50, 114, 6, 32gsummulg 19856 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
116 difrab 4267 . . . . . . . . . . 11 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}
117116eleq2i 2825 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)})
118 breq1 5096 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
119 breq1 5096 . . . . . . . . . . . . . 14 (𝑘 = 𝑢 → (𝑘r𝑑𝑢r𝑑))
120119notbid 318 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (¬ 𝑘r𝑑 ↔ ¬ 𝑢r𝑑))
121118, 120anbi12d 632 . . . . . . . . . . . 12 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
122121elrab 3643 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
12314psrbagf 21857 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢:𝐼⟶ℕ0)
124123ffnd 6657 . . . . . . . . . . . . . . . 16 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢 Fn 𝐼)
125124adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 Fn 𝐼)
12673adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
12713ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
128 eqidd 2734 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
12965adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
13066a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐼 → if(𝑦 = 𝑋, 1, 0) ∈ ℕ0)
13168, 130fmpti 7051 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0
132131a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
133132ffnd 6657 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
134133ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
135 eqidd 2734 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
13678adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
137129, 134, 127, 127, 72, 135, 136ofval 7627 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
138125, 126, 127, 127, 72, 128, 137ofrfval 7626 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
139125, 129, 127, 127, 72, 128, 135ofrfval 7626 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
140139notbid 318 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
141 rexnal 3085 . . . . . . . . . . . . . . 15 (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
142140, 141bitr4di 289 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
143138, 142anbi12d 632 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑) ↔ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
14430ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ ℕ0)
145123adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢:𝐼⟶ℕ0)
14628adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
147145, 146ffvelcdmd 7024 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
148147adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
149148adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ0)
150 nn0nlt0 12414 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑋) ∈ ℕ0 → ¬ (𝑑𝑋) < 0)
151144, 150syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑑𝑋) < 0)
15227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
153152ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
154153nn0cnd 12451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
155154addridd 11320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑𝑖) + 0) = (𝑑𝑖))
156155breq2d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) ↔ (𝑢𝑖) ≤ (𝑑𝑖)))
157156biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖)))
158 ifnefalse 4486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖𝑋 → if(𝑖 = 𝑋, 1, 0) = 0)
159158oveq2d 7368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
160159breq2d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + 0)))
161160imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖𝑋 → (((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)) ↔ ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖))))
162157, 161syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖))))
163162imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)))
164163impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑖𝑋 → (𝑢𝑖) ≤ (𝑑𝑖)))
165164necon1bd 2947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → 𝑖 = 𝑋))
166165ancrd 551 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
167166ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
168167ralimdva 3145 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → ∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
169168anim1d 611 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
170169imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
171 rexim 3074 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
172171imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
173 fveq2 6828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑢𝑖) = (𝑢𝑋))
174 fveq2 6828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑑𝑖) = (𝑑𝑋))
175173, 174breq12d 5106 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ (𝑑𝑖) ↔ (𝑢𝑋) ≤ (𝑑𝑋)))
176175notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑋 → (¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
177176ceqsrexbv 3607 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) ↔ (𝑋𝐼 ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
178177simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
179172, 178syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
18030adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
181180nn0red 12450 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℝ)
182148nn0red 12450 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℝ)
183181, 182ltnled 11267 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) < (𝑢𝑋) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
184183biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)) → (𝑑𝑋) < (𝑢𝑋))
185179, 184sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
186170, 185syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
187 breq2 5097 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑋) = 0 → ((𝑑𝑋) < (𝑢𝑋) ↔ (𝑑𝑋) < 0))
188186, 187syl5ibcom 245 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑢𝑋) = 0 → (𝑑𝑋) < 0))
189151, 188mtod 198 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑢𝑋) = 0)
190189neqned 2936 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≠ 0)
191 elnnne0 12402 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋) ∈ ℕ ↔ ((𝑢𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ≠ 0))
192149, 190, 191sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ)
193 elfzo0 13602 . . . . . . . . . . . . . . . 16 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) ↔ ((𝑑𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ (𝑑𝑋) < (𝑢𝑋)))
194144, 192, 186, 193syl3anbrc 1344 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ (0..^(𝑢𝑋)))
195 fzostep1 13688 . . . . . . . . . . . . . . 15 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
196194, 195syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
197149nn0red 12450 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℝ)
19832ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℕ0)
199198nn0red 12450 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℝ)
20028ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
201 iftrue 4480 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑋 → if(𝑖 = 𝑋, 1, 0) = 1)
202174, 201oveq12d 7370 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑋) + 1))
203173, 202breq12d 5106 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
204203rspcv 3569 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝐼 → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
205200, 204syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
206205imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
207206adantrr 717 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
208197, 199, 207lensymd 11271 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) < (𝑢𝑋))
209208intn3an3d 1483 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
210 elfzo0 13602 . . . . . . . . . . . . . . 15 (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ↔ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
211209, 210sylnibr 329 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)))
212196, 211orcnd 878 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
213143, 212sylbida 592 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)) → ((𝑑𝑋) + 1) = (𝑢𝑋))
214213anasss 466 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
215122, 214sylan2b 594 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}) → ((𝑑𝑋) + 1) = (𝑢𝑋))
216117, 215sylan2b 594 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑑𝑋) + 1) = (𝑢𝑋))
217216oveq1d 7367 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
218217mpteq2dva 5186 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
219218oveq2d 7368 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
22014psrbaglefi 21865 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
221220adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
22224ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Mnd)
22332adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑𝑋) + 1) ∈ ℕ0)
2244ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
225 elrabi 3639 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
22636adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
227226ffvelcdmda 7023 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑢) ∈ (Base‘𝑅))
228225, 227sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐹𝑢) ∈ (Base‘𝑅))
22942ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23027adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑:𝐼⟶ℕ0)
231230ffvelcdmda 7023 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
232231nn0cnd 12451 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
233225, 123syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢:𝐼⟶ℕ0)
234233adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢:𝐼⟶ℕ0)
235234ffvelcdmda 7023 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
236235nn0cnd 12451 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
23756nn0cni 12400 . . . . . . . . . . . . . . . . 17 if(𝑖 = 𝑋, 1, 0) ∈ ℂ
238237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
239232, 236, 238subadd23d 11501 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
240232, 238, 236addsubassd 11499 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
241239, 240eqtr4d 2771 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
242241mpteq2dva 5186 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
243 eqid 2733 . . . . . . . . . . . . . . . . . . 19 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
24414, 243psrbagconcl 21866 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
245 elrabi 3639 . . . . . . . . . . . . . . . . . 18 ((𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
246244, 245syl 17 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
247246adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
24814psrbagf 21857 . . . . . . . . . . . . . . . 16 ((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f𝑢):𝐼⟶ℕ0)
249247, 248syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢):𝐼⟶ℕ0)
250249ffnd 6657 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) Fn 𝐼)
25169a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
25213ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
253230ffnd 6657 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 Fn 𝐼)
254234ffnd 6657 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 Fn 𝐼)
255 eqidd 2734 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
256 eqidd 2734 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
257253, 254, 252, 252, 72, 255, 256ofval 7627 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f𝑢)‘𝑖) = ((𝑑𝑖) − (𝑢𝑖)))
25878adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
259250, 251, 252, 252, 72, 257, 258offval 7625 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))))
260 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
26116ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
262260, 261, 18syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
263262, 88syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
264263ffnd 6657 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
265253, 251, 252, 252, 72, 255, 258ofval 7627 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
266264, 254, 252, 252, 72, 265, 256offval 7625 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
267242, 259, 2663eqtr4d 2778 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
26814psrbagaddcl 21863 . . . . . . . . . . . . 13 (((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
269247, 261, 268syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
270267, 269eqeltrrd 2834 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
271229, 270ffvelcdmd 7024 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
2721, 34, 224, 228, 271ringcld 20180 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
2731, 22, 222, 223, 272mulgnn0cld 19010 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
274 disjdifr 4422 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅
275274a1i 11 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅)
276 simpl 482 . . . . . . . . . . . . 13 ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑)
277276a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑))
278277ss2rabi 4025 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
279278a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
280 undifr 4432 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
281279, 280sylib 218 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
282281eqcomd 2739 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
2831, 2, 6, 221, 273, 275, 282gsummptfidmsplit 19844 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
284 eldifi 4080 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
28528ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
286 eqidd 2734 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
287 eqidd 2734 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
288253, 254, 252, 252, 72, 286, 287ofval 7627 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
289285, 288mpdan 687 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
290284, 289sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
291290oveq2d 7368 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))))
292234, 285ffvelcdmd 7024 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢𝑋) ∈ ℕ0)
293284, 292sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℕ0)
294293nn0cnd 12451 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℂ)
29530nn0cnd 12451 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℂ)
296295adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑑𝑋) ∈ ℂ)
297294, 296pncan3d 11482 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))) = (𝑑𝑋))
298291, 297eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = (𝑑𝑋))
299298oveq1d 7367 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑑𝑋) + 1))
300249, 285ffvelcdmd 7024 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
301284, 300sylan2 593 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
302301nn0cnd 12451 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℂ)
303 1cnd 11114 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 1 ∈ ℂ)
304294, 302, 303addassd 11141 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
305299, 304eqtr3d 2770 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑𝑋) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
306305oveq1d 7367 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
30724ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 𝑅 ∈ Mnd)
308 peano2nn0 12428 . . . . . . . . . . . . . . 15 (((𝑑f𝑢)‘𝑋) ∈ ℕ0 → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
309300, 308syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
310284, 309sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
311284, 272sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
3121, 22, 2mulgnn0dir 19019 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ ((𝑢𝑋) ∈ ℕ0 ∧ (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0 ∧ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
313307, 293, 310, 311, 312syl13anc 1374 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
314306, 313eqtrd 2768 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
315314mpteq2dva 5186 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
316315oveq2d 7368 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
317 difssd 4086 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
318221, 317ssfid 9160 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ Fin)
3191, 22, 222, 292, 272mulgnn0cld 19010 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
320284, 319sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
3211, 22, 222, 309, 272mulgnn0cld 19010 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
322284, 321sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
323 eqid 2733 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
324 eqid 2733 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
3251, 2, 6, 318, 320, 322, 323, 324gsummptfidmadd 19839 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
326316, 325eqtrd 2768 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
32728ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑋𝐼)
32865adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑑 Fn 𝐼)
329 elrabi 3639 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
330329, 124syl 17 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 Fn 𝐼)
331330adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 Fn 𝐼)
33213ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝐼 ∈ V)
333 eqidd 2734 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
334 eqidd 2734 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
335328, 331, 332, 332, 72, 333, 334ofval 7627 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
336327, 335mpdan 687 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
337 fveq1 6827 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → (𝑘𝑋) = (𝑢𝑋))
338337eqeq1d 2735 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → ((𝑘𝑋) = 0 ↔ (𝑢𝑋) = 0))
339119, 338anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
340339elrab 3643 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
341340simprbi 496 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
342341simprd 495 . . . . . . . . . . . . . . 15 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢𝑋) = 0)
343342adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑢𝑋) = 0)
344343oveq2d 7368 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − (𝑢𝑋)) = ((𝑑𝑋) − 0))
34530adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℕ0)
346345nn0cnd 12451 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℂ)
347346subid1d 11468 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − 0) = (𝑑𝑋))
348336, 344, 3473eqtrrd 2773 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) = ((𝑑f𝑢)‘𝑋))
349348oveq1d 7367 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) + 1) = (((𝑑f𝑢)‘𝑋) + 1))
350349oveq1d 7367 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
351350mpteq2dva 5186 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
352351oveq2d 7368 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
353326, 352oveq12d 7370 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
35423adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp)
355106rabex 5279 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V
356355difexi 5270 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V
357356a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V)
358320fmpttd 7054 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
359 ovex 7385 . . . . . . . . . . . 12 ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
360359, 323fnmpti 6629 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
361360a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
362361, 318, 113fndmfifsupp 9269 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3631, 104, 6, 357, 358, 362gsumcl 19829 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
364322fmpttd 7054 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
365 ovex 7385 . . . . . . . . . . . 12 ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
366365, 324fnmpti 6629 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
367366a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
368367, 318, 113fndmfifsupp 9269 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3691, 104, 6, 357, 364, 368gsumcl 19829 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
370106rabex 5279 . . . . . . . . . 10 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V
371370a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V)
372278sseli 3926 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
373372, 321sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
374373fmpttd 7054 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}⟶(Base‘𝑅))
375 eqid 2733 . . . . . . . . . . . 12 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
376365, 375fnmpti 6629 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}
377376a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
378221, 279ssfid 9160 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ Fin)
379377, 378, 113fndmfifsupp 9269 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3801, 104, 6, 371, 374, 379gsumcl 19829 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
3811, 2, 354, 363, 369, 380grpassd 18860 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
382283, 353, 3813eqtrd 2772 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
383219, 382oveq12d 7370 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
384103, 115, 3833eqtr3d 2776 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
385 psdmul.m . . . . . 6 · = (.r𝑆)
3868adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
38741adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺𝐵)
3889, 10, 34, 385, 14, 386, 387, 19psrmulval 21883 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
389388oveq2d 7368 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
390107difexi 5270 . . . . . . 7 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V
391390a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V)
392 eldifi 4080 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
39338, 123syl 17 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢:𝐼⟶ℕ0)
394393adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢:𝐼⟶ℕ0)
39528ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑋𝐼)
396394, 395ffvelcdmd 7024 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝑢𝑋) ∈ ℕ0)
3971, 22, 25, 396, 50mulgnn0cld 19010 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
398392, 397sylan2 593 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
399398fmpttd 7054 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})⟶(Base‘𝑅))
400 eqid 2733 . . . . . . . . 9 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
401359, 400fnmpti 6629 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
402401a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
403 difssd 4086 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
40421, 403ssfid 9160 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ Fin)
405402, 404, 113fndmfifsupp 9269 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
4061, 104, 6, 391, 399, 405gsumcl 19829 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
4071, 2, 354, 369, 380grpcld 18862 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) ∈ (Base‘𝑅))
4081, 2, 354, 406, 363, 407grpassd 18860 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
409384, 389, 4083eqtr4d 2778 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
410409mpteq2dva 5186 . 2 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
4119, 10, 385, 4, 8, 41psrmulcl 21885 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
4129, 10, 14, 28, 411psdval 22075 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
413 psdmul.p . . . 4 + = (+g𝑆)
41423grpmgmd 18876 . . . . . 6 (𝜑𝑅 ∈ Mgm)
4159, 10, 414, 28, 8psdcl 22077 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4169, 10, 385, 4, 415, 41psrmulcl 21885 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∈ 𝐵)
4179, 10, 414, 28, 41psdcl 22077 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
4189, 10, 385, 4, 8, 417psrmulcl 21885 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) ∈ 𝐵)
4199, 10, 2, 413, 416, 418psradd 21876 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
4209, 1, 14, 10, 416psrelbas 21873 . . . . 5 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
421420ffnd 6657 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4229, 1, 14, 10, 418psrelbas 21873 . . . . 5 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
423422ffnd 6657 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
424106a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
425 inidm 4176 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
426415adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4279, 10, 34, 385, 14, 426, 387, 7psrmulval 21883 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))))
428355a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V)
4294ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
430 elrabi 3639 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4319, 1, 14, 10, 415psrelbas 21873 . . . . . . . . . . 11 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
432431adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
433432ffvelcdmda 7023 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
434430, 433sylan2 593 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
43542ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
43614, 243psrbagconcl 21866 . . . . . . . . . . 11 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
437436adantll 714 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
438 elrabi 3639 . . . . . . . . . 10 ((𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
439437, 438syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
440435, 439ffvelcdmd 7024 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘(𝑑f𝑏)) ∈ (Base‘𝑅))
4411, 34, 429, 434, 440ringcld 20180 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ (Base‘𝑅))
442441fmpttd 7054 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}⟶(Base‘𝑅))
443 ovex 7385 . . . . . . . . 9 (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ V
444 eqid 2733 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))
445443, 444fnmpti 6629 . . . . . . . 8 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
446445a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
447446, 221, 113fndmfifsupp 9269 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) finSupp (0g𝑅))
448 eqid 2733 . . . . . . 7 (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
449 df-of 7616 . . . . . . . . . 10 f + = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
450 vex 3441 . . . . . . . . . . 11 𝑢 ∈ V
451450a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 ∈ V)
452 ssv 3955 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V
453452a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V)
454 ssv 3955 . . . . . . . . . . 11 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V
455454a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V)
456449, 451, 453, 455elimampo 7489 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
457456biimpa 476 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
458 elrabi 3639 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
45914psrbagf 21857 . . . . . . . . . . . . . . . 16 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑚:𝐼⟶ℕ0)
460459ffund 6660 . . . . . . . . . . . . . . 15 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → Fun 𝑚)
461458, 460syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → Fun 𝑚)
462461funfnd 6517 . . . . . . . . . . . . 13 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 Fn dom 𝑚)
463462ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 Fn dom 𝑚)
464 velsn 4591 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
465 funmpt 6524 . . . . . . . . . . . . . . . 16 Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
466 funeq 6506 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (Fun 𝑛 ↔ Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
467465, 466mpbiri 258 . . . . . . . . . . . . . . 15 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → Fun 𝑛)
468467funfnd 6517 . . . . . . . . . . . . . 14 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → 𝑛 Fn dom 𝑛)
469464, 468sylbi 217 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 Fn dom 𝑛)
470469ad2antll 729 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑛 Fn dom 𝑛)
471 vex 3441 . . . . . . . . . . . . . 14 𝑚 ∈ V
472471dmex 7845 . . . . . . . . . . . . 13 dom 𝑚 ∈ V
473472a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑚 ∈ V)
474 vex 3441 . . . . . . . . . . . . . 14 𝑛 ∈ V
475474dmex 7845 . . . . . . . . . . . . 13 dom 𝑛 ∈ V
476475a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑛 ∈ V)
477 eqid 2733 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) = (dom 𝑚 ∩ dom 𝑛)
478 eqidd 2734 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
479 eqidd 2734 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
480463, 470, 473, 476, 477, 478, 479offval 7625 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
481480eqeq2d 2744 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
482 elsni 4592 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
483482oveq2d 7368 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
484483eqeq2d 2744 . . . . . . . . . . . 12 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
485484ad2antll 729 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
48613ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
487458, 459syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚:𝐼⟶ℕ0)
488487adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
489131a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
490 nn0cn 12398 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0𝑞 ∈ ℂ)
491 nn0cn 12398 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℕ0𝑟 ∈ ℂ)
492 nn0cn 12398 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ0𝑠 ∈ ℂ)
493 addsubass 11377 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
494490, 491, 492, 493syl3an 1160 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
495494adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
496486, 488, 489, 489, 495caofass 7656 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
497 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → 𝑖𝐼)
49856a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℕ0)
49968, 76, 497, 498fvmptd3 6958 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
500133, 133, 13, 13, 72, 499, 499offval 7625 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
501500oveq2d 7368 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
502501ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
503237subidi 11439 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)) = 0
504503mpteq2i 5189 . . . . . . . . . . . . . . . . . 18 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ 0)
505 fconstmpt 5681 . . . . . . . . . . . . . . . . . 18 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
506504, 505eqtr4i 2759 . . . . . . . . . . . . . . . . 17 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝐼 × {0})
507506oveq2i 7363 . . . . . . . . . . . . . . . 16 (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑚f + (𝐼 × {0}))
508 0zd 12487 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 0 ∈ ℤ)
509490addridd 11320 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0 → (𝑞 + 0) = 𝑞)
510509adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑞 ∈ ℕ0) → (𝑞 + 0) = 𝑞)
511486, 488, 508, 510caofid0r 7650 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
512507, 511eqtrid 2780 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
513496, 502, 5123eqtrd 2772 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
514 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
515513, 514eqeltrd 2833 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
516 oveq1 7359 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
517516eleq1d 2818 . . . . . . . . . . . . 13 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
518515, 517syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
519518adantrr 717 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
520485, 519sylbid 240 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
521481, 520sylbird 260 . . . . . . . . 9 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
522521rexlimdvva 3190 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
523457, 522mpd 15 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
524 simpr 484 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
52513mptexd 7164 . . . . . . . . . . 11 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V)
526 elsng 4589 . . . . . . . . . . 11 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
527525, 526syl 17 . . . . . . . . . 10 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
52868, 527mpbiri 258 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
529528ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
530449mpofun 7476 . . . . . . . . 9 Fun ∘f +
531530a1i 11 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → Fun ∘f + )
532 xpss 5635 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ (V × V)
533472inex1 5257 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) ∈ V
534533mptex 7163 . . . . . . . . . . 11 (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
535534rgen2w 3053 . . . . . . . . . 10 𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
536449dmmpoga 8011 . . . . . . . . . 10 (∀𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V → dom ∘f + = (V × V))
537535, 536mp1i 13 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → dom ∘f + = (V × V))
538532, 537sseqtrrid 3974 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ dom ∘f + )
539524, 529, 531, 538elovimad 7402 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})))
54013ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝐼 ∈ V)
541 elrabi 3639 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
54214psrbagf 21857 . . . . . . . . . . . . 13 (𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑣:𝐼⟶ℕ0)
543541, 542syl 17 . . . . . . . . . . . 12 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣:𝐼⟶ℕ0)
544543ad2antll 729 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣:𝐼⟶ℕ0)
545131a1i 11 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
546494adantl 481 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
547540, 544, 545, 545, 546caofass 7656 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
548133ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
54978adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
550548, 548, 540, 540, 72, 549, 549offval 7625 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
551550oveq2d 7368 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
552506oveq2i 7363 . . . . . . . . . . 11 (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑣f + (𝐼 × {0}))
553 0zd 12487 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 0 ∈ ℤ)
554 nn0cn 12398 . . . . . . . . . . . . . 14 (𝑝 ∈ ℕ0𝑝 ∈ ℂ)
555554addridd 11320 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ0 → (𝑝 + 0) = 𝑝)
556555adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
557540, 544, 553, 556caofid0r 7650 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝐼 × {0})) = 𝑣)
558552, 557eqtrid 2780 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑣)
559547, 551, 5583eqtrrd 2773 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
560 oveq1 7359 . . . . . . . . . 10 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
561560eqeq2d 2744 . . . . . . . . 9 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
562559, 561syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
56316ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
56414psrbagaddcl 21863 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
565458, 563, 564syl2an2 686 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
56614psrbagf 21857 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
567565, 566syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
568567adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
569 feq1 6634 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢:𝐼⟶ℕ0 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0))
570568, 569syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢:𝐼⟶ℕ0))
571485, 570sylbid 240 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢:𝐼⟶ℕ0))
572481, 571sylbird 260 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
573572rexlimdvva 3190 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
574457, 573mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℕ0)
575574adantrr 717 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢:𝐼⟶ℕ0)
576575ffvelcdmda 7023 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
577576nn0cnd 12451 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
578237a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
579577, 578npcand 11483 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
580579mpteq2dva 5186 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
581575ffnd 6657 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 Fn 𝐼)
582581, 548, 540, 540, 72offn 7629 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
583 eqidd 2734 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
584581, 548, 540, 540, 72, 583, 549ofval 7627 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
585582, 548, 540, 540, 72, 584, 549offval 7625 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
586575feqmptd 6896 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
587580, 585, 5863eqtr4rd 2779 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
588 oveq1 7359 . . . . . . . . . 10 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
589588eqeq2d 2744 . . . . . . . . 9 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
590587, 589syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
591562, 590impbid 212 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
592448, 523, 539, 591f1o2d 7606 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))–1-1-onto→{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
5931, 104, 6, 428, 442, 447, 592gsumf1o 19830 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))) = (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
594555adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
595486, 488, 508, 594caofid0r 7650 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
596507, 595eqtrid 2780 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
597496, 502, 5963eqtrd 2772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
598597, 514eqeltrd 2833 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
599598, 517syl5ibrcom 247 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
600599adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
601485, 600sylbid 240 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
602481, 601sylbird 260 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
603602rexlimdvva 3190 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
604457, 603mpd 15 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
605 eqidd 2734 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
606 eqidd 2734 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))))
607 fveq2 6828 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
608 oveq2 7360 . . . . . . . . . . 11 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑑f𝑏) = (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
609608fveq2d 6832 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐺‘(𝑑f𝑏)) = (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
610607, 609oveq12d 7370 . . . . . . . . 9 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
611604, 605, 606, 610fmptco 7068 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
61228ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑋𝐼)
6138ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹𝐵)
614 elrabi 3639 . . . . . . . . . . . . . 14 ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
615604, 614syl 17 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6169, 10, 14, 612, 613, 615psdcoef 22076 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
617574ffnd 6657 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 Fn 𝐼)
618131a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
619618ffnd 6657 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
62013ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐼 ∈ V)
621 eqidd 2734 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
622 iftrue 4480 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
623 1ex 11115 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
624622, 68, 623fvmpt 6935 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
625624adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
626617, 619, 620, 620, 72, 621, 625ofval 7627 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
627612, 626mpdan 687 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
628627oveq1d 7367 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (((𝑢𝑋) − 1) + 1))
629 nn0sscn 12393 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℂ
630629a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ℕ0 ⊆ ℂ)
631574, 630fssd 6673 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℂ)
632631, 612ffvelcdmd 7024 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℂ)
633 1cnd 11114 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 1 ∈ ℂ)
634632, 633npcand 11483 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋) − 1) + 1) = (𝑢𝑋))
635628, 634eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (𝑢𝑋))
636617, 619, 620, 620, 72offn 7629 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
637 eqidd 2734 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
63878adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
639617, 619, 620, 620, 72, 637, 638ofval 7627 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
640574ffvelcdmda 7023 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
641640nn0cnd 12451 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
642237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
643641, 642npcand 11483 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
644620, 636, 619, 617, 639, 638, 643offveq 7642 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑢)
645644fveq2d 6832 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹𝑢))
646635, 645oveq12d 7370 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
647616, 646eqtrd 2768 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
64826ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑:𝐼⟶ℕ0)
649648ffvelcdmda 7023 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
650649nn0cnd 12451 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
651650, 641, 642subsub3d 11509 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0))) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
652651mpteq2dva 5186 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
65365adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑 Fn 𝐼)
654 eqidd 2734 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
655653, 636, 620, 620, 72, 654, 639offval 7625 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))))
656653, 619, 620, 620, 72offn 7629 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
657653, 619, 620, 620, 72, 654, 638ofval 7627 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
658656, 617, 620, 620, 72, 657, 637offval 7625 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
659652, 655, 6583eqtr4d 2778 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
660659fveq2d 6832 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
661647, 660oveq12d 7370 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
6624ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Ring)
663574, 612ffvelcdmd 7024 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℕ0)
664663nn0zd 12500 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℤ)
66536ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
666 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
66716ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
668 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
669 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
67014, 243, 669psrbagleadd1 21867 . . . . . . . . . . . . . . . . . . 19 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
671666, 667, 668, 670syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
672 eleq1 2821 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
673671, 672syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
674485, 673sylbid 240 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
675481, 674sylbird 260 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
676675rexlimdvva 3190 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
677457, 676mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
678 elrabi 3639 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
679677, 678syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
680665, 679ffvelcdmd 7024 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹𝑢) ∈ (Base‘𝑅))
68142ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
68219adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
68314, 669psrbagconcl 21866 . . . . . . . . . . . . . 14 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
684682, 677, 683syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
685 elrabi 3639 . . . . . . . . . . . . 13 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
686684, 685syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
687681, 686ffvelcdmd 7024 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
6881, 22, 34mulgass2 20229 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑢𝑋) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
689662, 664, 680, 687, 688syl13anc 1374 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
690661, 689eqtrd 2768 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
691690mpteq2dva 5186 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
692611, 691eqtrd 2768 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
693692oveq2d 7368 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
694 snex 5376 . . . . . . . . . 10 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ V
695355, 694xpex 7692 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∈ V
696695funimaex 6574 . . . . . . . 8 (Fun ∘f + → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
697530, 696mp1i 13 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
69824ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Mnd)
6991, 34, 662, 680, 687ringcld 20180 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
7001, 22, 698, 663, 699mulgnn0cld 19010 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
701 eqid 2733 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
702359, 701fnmpti 6629 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
703702a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
704703, 21, 113fndmfifsupp 9269 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
705462ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑚 Fn dom 𝑚)
706469adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑛 Fn dom 𝑛)
707472a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑚 ∈ V)
708475a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑛 ∈ V)
709 eqidd 2734 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
710 eqidd 2734 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
711705, 706, 707, 708, 477, 709, 710offval 7625 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
712711eqeq2d 2744 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
713712rexbidva 3155 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ ∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
71416ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
715 oveq2 7360 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
716715eqeq2d 2744 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
717716rexsng 4628 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
718714, 717syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
719713, 718bitr3d 281 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
720719rexbidva 3155 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
721 breq1 5096 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
722 breq1 5096 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
723 fveq1 6827 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘𝑋) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋))
724723eqeq1d 2735 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘𝑋) = 0 ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
725722, 724anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
726725notbid 318 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
727721, 726anbi12d 632 . . . . . . . . . . . . . . 15 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))))
728458, 714, 564syl2an2 686 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
729 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
730 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
73114, 243, 44psrbagleadd1 21867 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
732729, 714, 730, 731syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
733721elrab 3643 . . . . . . . . . . . . . . . . . 18 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
734733simprbi 496 . . . . . . . . . . . . . . . . 17 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
735732, 734syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
73628ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
737487adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
738737ffnd 6657 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 Fn 𝐼)
739133ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
74013ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
741 eqidd 2734 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑚𝑋) = (𝑚𝑋))
742624adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
743738, 739, 740, 740, 72, 741, 742ofval 7627 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
744736, 743mpdan 687 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
745737, 736ffvelcdmd 7024 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚𝑋) ∈ ℕ0)
746 nn0p1nn 12427 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑋) ∈ ℕ0 → ((𝑚𝑋) + 1) ∈ ℕ)
747745, 746syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚𝑋) + 1) ∈ ℕ)
748744, 747eqeltrd 2833 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ∈ ℕ)
749748nnne0d 12182 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ≠ 0)
750749neneqd 2934 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)
751750intnand 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
752735, 751jca 511 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
753727, 728, 752elrabd 3645 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
754 eleq1 2821 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
755753, 754syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
756 breq1 5096 . . . . . . . . . . . . . 14 (𝑘 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
757 elrabi 3639 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
758757adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
759131a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
760757, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢:𝐼⟶ℕ0)
761760adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢:𝐼⟶ℕ0)
76228ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑋𝐼)
763761, 762ffvelcdmd 7024 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ0)
764339notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑘 = 𝑢 → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
765118, 764anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
766765elrab 3643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
767766simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
768767simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
769768adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
770769adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
771757, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 Fn 𝐼)
772771adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 Fn 𝐼)
773772adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢 Fn 𝐼)
77419adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
77588ffnd 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
776774, 775syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
777776adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
77813ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝐼 ∈ V)
779 eqidd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
780 eqidd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
781773, 777, 778, 778, 72, 779, 780ofrfval 7626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)))
782770, 781mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
783782r19.21bi 3225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
784783adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
78565ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝑑 Fn 𝐼)
78669a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
78713ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝐼 ∈ V)
788 eqidd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
78978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
790785, 786, 787, 787, 72, 788, 789ofval 7627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
791790an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
792158adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → if(𝑖 = 𝑋, 1, 0) = 0)
793792oveq2d 7368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
79427ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑:𝐼⟶ℕ0)
795794ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
796795adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℕ0)
797796nn0cnd 12451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℂ)
798797addridd 11320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + 0) = (𝑑𝑖))
799791, 793, 7983eqtrd 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = (𝑑𝑖))
800784, 799breqtrd 5119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ (𝑑𝑖))
801 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) = 0)
80227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑:𝐼⟶ℕ0)
803802, 762ffvelcdmd 7024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑𝑋) ∈ ℕ0)
804803nn0ge0d 12452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 0 ≤ (𝑑𝑋))
805804adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 0 ≤ (𝑑𝑋))
806801, 805eqbrtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) ≤ (𝑑𝑋))
807806adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑋) ≤ (𝑑𝑋))
808175, 800, 807pm2.61ne 3014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ (𝑑𝑖))
809808ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
81065adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑 Fn 𝐼)
811810adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑 Fn 𝐼)
812 eqidd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
813773, 811, 778, 778, 72, 779, 812ofrfval 7626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
814809, 813mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r𝑑)
815814ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → 𝑢r𝑑))
816767simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
817816adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
818 imnan 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢r𝑑 → ¬ (𝑢𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
819817, 818sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r𝑑 → ¬ (𝑢𝑋) = 0))
820819con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → ¬ 𝑢r𝑑))
821815, 820pm2.65d 196 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢𝑋) = 0)
822821neqned 2936 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ≠ 0)
823763, 822, 191sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ)
824823nnge1d 12180 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 1 ≤ (𝑢𝑋))
825824adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 1 ≤ (𝑢𝑋))
826173breq2d 5105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → (1 ≤ (𝑢𝑖) ↔ 1 ≤ (𝑢𝑋)))
827825, 826syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑖 = 𝑋 → 1 ≤ (𝑢𝑖)))
828827imp 406 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ 𝑖 = 𝑋) → 1 ≤ (𝑢𝑖))
829761ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
830829nn0ge0d 12452 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 0 ≤ (𝑢𝑖))
831830adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ ¬ 𝑖 = 𝑋) → 0 ≤ (𝑢𝑖))
832828, 831ifpimpda 1080 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
833 brif1 7449 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖) ↔ if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
834832, 833sylibr 234 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
835834ralrimiva 3125 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
83669a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
83713ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝐼 ∈ V)
83878adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
839 eqidd 2734 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
840836, 772, 837, 837, 72, 838, 839ofrfval 7626 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢 ↔ ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖)))
841835, 840mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢)
84214psrbagcon 21864 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
843758, 759, 841, 842syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
844843simpld 494 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
845 eqidd 2734 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
846810, 836, 837, 837, 72, 845, 838ofval 7627 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
847772, 776, 837, 837, 72, 839, 846ofrfval 7626 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
848769, 847mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
849848r19.21bi 3225 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
850829nn0red 12450 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℝ)
85160a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
852802ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
853852nn0red 12450 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
854850, 851, 853lesubaddd 11721 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
855849, 854mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
856855ralrimiva 3125 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
857772, 836, 837, 837, 72offn 7629 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
858772, 836, 837, 837, 72, 839, 838ofval 7627 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
859857, 810, 837, 837, 72, 858, 845ofrfval 7626 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ↔ ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖)))
860856, 859mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑)
861756, 844, 860elrabd 3645 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
862829nn0cnd 12451 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
863237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
864862, 863npcand 11483 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
865864mpteq2dva 5186 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
866857, 836, 837, 837, 72, 858, 838offval 7625 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
867761feqmptd 6896 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
868865, 866, 8673eqtr4rd 2779 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
869 oveq1 7359 . . . . . . . . . . . . . 14 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
870869eqeq2d 2744 . . . . . . . . . . . . 13 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
871755, 861, 868, 870rspceb2dv 3577 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
872456, 720, 8713bitrd 305 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
873872eqrdv 2731 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
874 difrab 4267 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}
875873, 874eqtr4di 2786 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
876 difssd 4086 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
877875, 876eqsstrd 3965 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
878704, 877, 113fmptssfisupp 9285 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
879 difss 4085 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
880 disjdif 4421 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
881 ssdisj 4409 . . . . . . . . . 10 ((({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅)
882879, 880, 881mp2an 692 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
883882ineqcomi 4160 . . . . . . . 8 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅
884883a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅)
885279, 99psdmullem 22081 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
886875, 885eqtr4d 2771 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})))
8871, 104, 2, 6, 697, 700, 878, 884, 886gsumsplit2 19843 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
888693, 887eqtrd 2768 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
889427, 593, 8883eqtrd 2772 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
890417adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
8919, 10, 34, 385, 14, 386, 890, 7psrmulval 21883 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))))
89241ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺𝐵)
8939, 10, 14, 285, 892, 247psdcoef 22076 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
894267fveq2d 6832 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
895894oveq2d 7368 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
896893, 895eqtrd 2768 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
897896oveq2d 7368 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
898309nn0zd 12500 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ)
8991, 22, 34mulgass3 20273 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
900224, 898, 228, 271, 899syl13anc 1374 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
901897, 900eqtrd 2768 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
902901mpteq2dva 5186 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
903902oveq2d 7368 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
9041, 2, 6, 221, 321, 275, 282gsummptfidmsplit 19844 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
905891, 903, 9043eqtrd 2772 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
906421, 423, 424, 424, 425, 889, 905offval 7625 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
907419, 906eqtrd 2768 . 2 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
908410, 412, 9073eqtr4d 2778 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  if-wif 1062  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  ifcif 4474  {csn 4575   class class class wbr 5093  cmpt 5174   × cxp 5617  ccnv 5618  dom cdm 5619  cima 5622  ccom 5623  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  r cofr 7615  m cmap 8756  Fincfn 8875  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   < clt 11153  cle 11154  cmin 11351  cn 12132  0cn0 12388  cz 12475  ..^cfzo 13556  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  Mndcmnd 18644  Grpcgrp 18848  .gcmg 18982  CMndccmn 19694  Ringcrg 20153  CRingccrg 20154   mPwSer cmps 21843   mPSDer cpsd 22046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-tset 17182  df-0g 17347  df-gsum 17348  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-mulg 18983  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-psr 21848  df-psd 22072
This theorem is referenced by:  psd1  22083  psdpw  22086
  Copyright terms: Public domain W3C validator