MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmul Structured version   Visualization version   GIF version

Theorem psdmul 22069
Description: Product rule for power series. An outline is available at https://github.com/icecream17/Stuff/blob/main/math/psdmul.pdf. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psdmul.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmul.b 𝐵 = (Base‘𝑆)
psdmul.p + = (+g𝑆)
psdmul.m · = (.r𝑆)
psdmul.r (𝜑𝑅 ∈ CRing)
psdmul.x (𝜑𝑋𝐼)
psdmul.f (𝜑𝐹𝐵)
psdmul.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdmul (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))

Proof of Theorem psdmul
Dummy variables 𝑏 𝑑 𝑖 𝑘 𝑚 𝑛 𝑜 𝑝 𝑞 𝑟 𝑠 𝑢 𝑣 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
3 psdmul.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43crngringd 20149 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
54ringcmnd 20187 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
7 simpr 484 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8 psdmul.f . . . . . . . . . . 11 (𝜑𝐹𝐵)
9 psdmul.s . . . . . . . . . . . 12 𝑆 = (𝐼 mPwSer 𝑅)
10 psdmul.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
11 reldmpsr 21839 . . . . . . . . . . . 12 Rel dom mPwSer
129, 10, 11strov2rcl 17146 . . . . . . . . . . 11 (𝐹𝐵𝐼 ∈ V)
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐼 ∈ V)
14 eqid 2729 . . . . . . . . . . 11 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1514psrbagsn 21986 . . . . . . . . . 10 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1613, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1716adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1814psrbagaddcl 21849 . . . . . . . 8 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
197, 17, 18syl2anc 584 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2014psrbaglefi 21851 . . . . . . 7 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
2119, 20syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
22 eqid 2729 . . . . . . 7 (.g𝑅) = (.g𝑅)
233crnggrpd 20150 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2423grpmndd 18843 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
2524ad2antrr 726 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Mnd)
2614psrbagf 21843 . . . . . . . . . . 11 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
28 psdmul.x . . . . . . . . . . 11 (𝜑𝑋𝐼)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
3027, 29ffvelcdmd 7023 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
31 peano2nn0 12442 . . . . . . . . 9 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
3230, 31syl 17 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
3332adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑𝑋) + 1) ∈ ℕ0)
34 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
354ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Ring)
369, 1, 14, 10, 8psrelbas 21859 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
3736ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
38 elrabi 3645 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3938adantl 481 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4037, 39ffvelcdmd 7023 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐹𝑢) ∈ (Base‘𝑅))
41 psdmul.g . . . . . . . . . . 11 (𝜑𝐺𝐵)
429, 1, 14, 10, 41psrelbas 21859 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4342ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
44 eqid 2729 . . . . . . . . . . . 12 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
4514, 44psrbagconcl 21852 . . . . . . . . . . 11 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
4619, 45sylan 580 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
47 elrabi 3645 . . . . . . . . . 10 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4846, 47syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4943, 48ffvelcdmd 7023 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
501, 34, 35, 40, 49ringcld 20163 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
511, 22, 25, 33, 50mulgnn0cld 18992 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
52 disjdifr 4426 . . . . . . 7 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅
5352a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅)
54 1nn0 12418 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
55 0nn0 12417 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
5654, 55ifcli 4526 . . . . . . . . . . . . . . 15 if(𝑖 = 𝑋, 1, 0) ∈ ℕ0
5756nn0ge0i 12429 . . . . . . . . . . . . . 14 0 ≤ if(𝑖 = 𝑋, 1, 0)
5827ffvelcdmda 7022 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
5958nn0red 12464 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
6056nn0rei 12413 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
6259, 61addge01d 11726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (0 ≤ if(𝑖 = 𝑋, 1, 0) ↔ (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
6357, 62mpbii 233 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6463ralrimiva 3121 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6527ffnd 6657 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
6654, 55ifcli 4526 . . . . . . . . . . . . . . . . 17 if(𝑦 = 𝑋, 1, 0) ∈ ℕ0
6766elexi 3461 . . . . . . . . . . . . . . . 16 if(𝑦 = 𝑋, 1, 0) ∈ V
68 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
6967, 68fnmpti 6629 . . . . . . . . . . . . . . 15 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
7069a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7113adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
72 inidm 4180 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
7365, 70, 71, 71, 72offn 7630 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
74 eqidd 2730 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
75 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑖 → (𝑦 = 𝑋𝑖 = 𝑋))
7675ifbid 4502 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0))
7756elexi 3461 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ V
7876, 68, 77fvmpt 6934 . . . . . . . . . . . . . . 15 (𝑖𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
7978adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
8065, 70, 71, 71, 72, 74, 79ofval 7628 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
8165, 73, 71, 71, 72, 74, 80ofrfval 7627 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
8264, 81mpbird 257 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8382adantr 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8413ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
8514psrbagf 21843 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
8685adantl 481 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
8727adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
8814psrbagf 21843 . . . . . . . . . . . . 13 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
8919, 88syl 17 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
9089adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
91 nn0re 12411 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ0𝑞 ∈ ℝ)
92 nn0re 12411 . . . . . . . . . . . . 13 (𝑟 ∈ ℕ0𝑟 ∈ ℝ)
93 nn0re 12411 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
94 letr 11228 . . . . . . . . . . . . 13 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9591, 92, 93, 94syl3an 1160 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9695adantl 481 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9784, 86, 87, 90, 96caoftrn 7658 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘r𝑑𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) → 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9883, 97mpan2d 694 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘r𝑑𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9998ss2rabdv 4029 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
100 undifr 4436 . . . . . . . 8 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
10199, 100sylib 218 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
102101eqcomd 2735 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
1031, 2, 6, 21, 51, 53, 102gsummptfidmsplit 19827 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
104 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
105 ovex 7386 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
106105rabex 5281 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
107106rabex 5281 . . . . . . 7 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V
108107a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V)
109 ovex 7386 . . . . . . . . 9 ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ V
110 eqid 2729 . . . . . . . . 9 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
111109, 110fnmpti 6629 . . . . . . . 8 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
112111a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
113 fvexd 6841 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
114112, 21, 113fndmfifsupp 9287 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) finSupp (0g𝑅))
1151, 104, 22, 108, 50, 114, 6, 32gsummulg 19839 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
116 difrab 4271 . . . . . . . . . . 11 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}
117116eleq2i 2820 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)})
118 breq1 5098 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
119 breq1 5098 . . . . . . . . . . . . . 14 (𝑘 = 𝑢 → (𝑘r𝑑𝑢r𝑑))
120119notbid 318 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (¬ 𝑘r𝑑 ↔ ¬ 𝑢r𝑑))
121118, 120anbi12d 632 . . . . . . . . . . . 12 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
122121elrab 3650 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
12314psrbagf 21843 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢:𝐼⟶ℕ0)
124123ffnd 6657 . . . . . . . . . . . . . . . 16 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢 Fn 𝐼)
125124adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 Fn 𝐼)
12673adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
12713ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
128 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
12965adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
13066a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐼 → if(𝑦 = 𝑋, 1, 0) ∈ ℕ0)
13168, 130fmpti 7050 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0
132131a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
133132ffnd 6657 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
134133ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
135 eqidd 2730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
13678adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
137129, 134, 127, 127, 72, 135, 136ofval 7628 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
138125, 126, 127, 127, 72, 128, 137ofrfval 7627 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
139125, 129, 127, 127, 72, 128, 135ofrfval 7627 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
140139notbid 318 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
141 rexnal 3081 . . . . . . . . . . . . . . 15 (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
142140, 141bitr4di 289 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
143138, 142anbi12d 632 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑) ↔ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
14430ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ ℕ0)
145123adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢:𝐼⟶ℕ0)
14628adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
147145, 146ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
148147adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
149148adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ0)
150 nn0nlt0 12428 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑋) ∈ ℕ0 → ¬ (𝑑𝑋) < 0)
151144, 150syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑑𝑋) < 0)
15227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
153152ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
154153nn0cnd 12465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
155154addridd 11334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑𝑖) + 0) = (𝑑𝑖))
156155breq2d 5107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) ↔ (𝑢𝑖) ≤ (𝑑𝑖)))
157156biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖)))
158 ifnefalse 4490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖𝑋 → if(𝑖 = 𝑋, 1, 0) = 0)
159158oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
160159breq2d 5107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + 0)))
161160imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖𝑋 → (((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)) ↔ ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖))))
162157, 161syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖))))
163162imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)))
164163impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑖𝑋 → (𝑢𝑖) ≤ (𝑑𝑖)))
165164necon1bd 2943 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → 𝑖 = 𝑋))
166165ancrd 551 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
167166ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
168167ralimdva 3141 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → ∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
169168anim1d 611 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
170169imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
171 rexim 3070 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
172171imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
173 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑢𝑖) = (𝑢𝑋))
174 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑑𝑖) = (𝑑𝑋))
175173, 174breq12d 5108 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ (𝑑𝑖) ↔ (𝑢𝑋) ≤ (𝑑𝑋)))
176175notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑋 → (¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
177176ceqsrexbv 3613 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) ↔ (𝑋𝐼 ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
178177simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
179172, 178syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
18030adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
181180nn0red 12464 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℝ)
182148nn0red 12464 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℝ)
183181, 182ltnled 11281 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) < (𝑢𝑋) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
184183biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)) → (𝑑𝑋) < (𝑢𝑋))
185179, 184sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
186170, 185syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
187 breq2 5099 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑋) = 0 → ((𝑑𝑋) < (𝑢𝑋) ↔ (𝑑𝑋) < 0))
188186, 187syl5ibcom 245 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑢𝑋) = 0 → (𝑑𝑋) < 0))
189151, 188mtod 198 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑢𝑋) = 0)
190189neqned 2932 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≠ 0)
191 elnnne0 12416 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋) ∈ ℕ ↔ ((𝑢𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ≠ 0))
192149, 190, 191sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ)
193 elfzo0 13621 . . . . . . . . . . . . . . . 16 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) ↔ ((𝑑𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ (𝑑𝑋) < (𝑢𝑋)))
194144, 192, 186, 193syl3anbrc 1344 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ (0..^(𝑢𝑋)))
195 fzostep1 13704 . . . . . . . . . . . . . . 15 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
196194, 195syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
197149nn0red 12464 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℝ)
19832ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℕ0)
199198nn0red 12464 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℝ)
20028ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
201 iftrue 4484 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑋 → if(𝑖 = 𝑋, 1, 0) = 1)
202174, 201oveq12d 7371 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑋) + 1))
203173, 202breq12d 5108 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
204203rspcv 3575 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝐼 → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
205200, 204syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
206205imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
207206adantrr 717 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
208197, 199, 207lensymd 11285 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) < (𝑢𝑋))
209208intn3an3d 1483 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
210 elfzo0 13621 . . . . . . . . . . . . . . 15 (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ↔ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
211209, 210sylnibr 329 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)))
212196, 211orcnd 878 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
213143, 212sylbida 592 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)) → ((𝑑𝑋) + 1) = (𝑢𝑋))
214213anasss 466 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
215122, 214sylan2b 594 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}) → ((𝑑𝑋) + 1) = (𝑢𝑋))
216117, 215sylan2b 594 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑑𝑋) + 1) = (𝑢𝑋))
217216oveq1d 7368 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
218217mpteq2dva 5188 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
219218oveq2d 7369 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
22014psrbaglefi 21851 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
221220adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
22224ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Mnd)
22332adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑𝑋) + 1) ∈ ℕ0)
2244ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
225 elrabi 3645 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
22636adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
227226ffvelcdmda 7022 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑢) ∈ (Base‘𝑅))
228225, 227sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐹𝑢) ∈ (Base‘𝑅))
22942ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23027adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑:𝐼⟶ℕ0)
231230ffvelcdmda 7022 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
232231nn0cnd 12465 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
233225, 123syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢:𝐼⟶ℕ0)
234233adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢:𝐼⟶ℕ0)
235234ffvelcdmda 7022 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
236235nn0cnd 12465 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
23756nn0cni 12414 . . . . . . . . . . . . . . . . 17 if(𝑖 = 𝑋, 1, 0) ∈ ℂ
238237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
239232, 236, 238subadd23d 11515 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
240232, 238, 236addsubassd 11513 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
241239, 240eqtr4d 2767 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
242241mpteq2dva 5188 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
243 eqid 2729 . . . . . . . . . . . . . . . . . . 19 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
24414, 243psrbagconcl 21852 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
245 elrabi 3645 . . . . . . . . . . . . . . . . . 18 ((𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
246244, 245syl 17 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
247246adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
24814psrbagf 21843 . . . . . . . . . . . . . . . 16 ((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f𝑢):𝐼⟶ℕ0)
249247, 248syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢):𝐼⟶ℕ0)
250249ffnd 6657 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) Fn 𝐼)
25169a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
25213ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
253230ffnd 6657 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 Fn 𝐼)
254234ffnd 6657 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 Fn 𝐼)
255 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
256 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
257253, 254, 252, 252, 72, 255, 256ofval 7628 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f𝑢)‘𝑖) = ((𝑑𝑖) − (𝑢𝑖)))
25878adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
259250, 251, 252, 252, 72, 257, 258offval 7626 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))))
260 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
26116ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
262260, 261, 18syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
263262, 88syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
264263ffnd 6657 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
265253, 251, 252, 252, 72, 255, 258ofval 7628 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
266264, 254, 252, 252, 72, 265, 256offval 7626 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
267242, 259, 2663eqtr4d 2774 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
26814psrbagaddcl 21849 . . . . . . . . . . . . 13 (((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
269247, 261, 268syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
270267, 269eqeltrrd 2829 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
271229, 270ffvelcdmd 7023 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
2721, 34, 224, 228, 271ringcld 20163 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
2731, 22, 222, 223, 272mulgnn0cld 18992 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
274 disjdifr 4426 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅
275274a1i 11 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅)
276 simpl 482 . . . . . . . . . . . . 13 ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑)
277276a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑))
278277ss2rabi 4030 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
279278a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
280 undifr 4436 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
281279, 280sylib 218 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
282281eqcomd 2735 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
2831, 2, 6, 221, 273, 275, 282gsummptfidmsplit 19827 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
284 eldifi 4084 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
28528ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
286 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
287 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
288253, 254, 252, 252, 72, 286, 287ofval 7628 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
289285, 288mpdan 687 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
290284, 289sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
291290oveq2d 7369 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))))
292234, 285ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢𝑋) ∈ ℕ0)
293284, 292sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℕ0)
294293nn0cnd 12465 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℂ)
29530nn0cnd 12465 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℂ)
296295adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑑𝑋) ∈ ℂ)
297294, 296pncan3d 11496 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))) = (𝑑𝑋))
298291, 297eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = (𝑑𝑋))
299298oveq1d 7368 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑑𝑋) + 1))
300249, 285ffvelcdmd 7023 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
301284, 300sylan2 593 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
302301nn0cnd 12465 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℂ)
303 1cnd 11129 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 1 ∈ ℂ)
304294, 302, 303addassd 11156 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
305299, 304eqtr3d 2766 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑𝑋) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
306305oveq1d 7368 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
30724ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 𝑅 ∈ Mnd)
308 peano2nn0 12442 . . . . . . . . . . . . . . 15 (((𝑑f𝑢)‘𝑋) ∈ ℕ0 → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
309300, 308syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
310284, 309sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
311284, 272sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
3121, 22, 2mulgnn0dir 19001 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ ((𝑢𝑋) ∈ ℕ0 ∧ (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0 ∧ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
313307, 293, 310, 311, 312syl13anc 1374 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
314306, 313eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
315314mpteq2dva 5188 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
316315oveq2d 7369 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
317 difssd 4090 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
318221, 317ssfid 9170 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ Fin)
3191, 22, 222, 292, 272mulgnn0cld 18992 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
320284, 319sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
3211, 22, 222, 309, 272mulgnn0cld 18992 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
322284, 321sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
323 eqid 2729 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
324 eqid 2729 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
3251, 2, 6, 318, 320, 322, 323, 324gsummptfidmadd 19822 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
326316, 325eqtrd 2764 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
32728ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑋𝐼)
32865adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑑 Fn 𝐼)
329 elrabi 3645 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
330329, 124syl 17 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 Fn 𝐼)
331330adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 Fn 𝐼)
33213ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝐼 ∈ V)
333 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
334 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
335328, 331, 332, 332, 72, 333, 334ofval 7628 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
336327, 335mpdan 687 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
337 fveq1 6825 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → (𝑘𝑋) = (𝑢𝑋))
338337eqeq1d 2731 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → ((𝑘𝑋) = 0 ↔ (𝑢𝑋) = 0))
339119, 338anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
340339elrab 3650 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
341340simprbi 496 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
342341simprd 495 . . . . . . . . . . . . . . 15 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢𝑋) = 0)
343342adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑢𝑋) = 0)
344343oveq2d 7369 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − (𝑢𝑋)) = ((𝑑𝑋) − 0))
34530adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℕ0)
346345nn0cnd 12465 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℂ)
347346subid1d 11482 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − 0) = (𝑑𝑋))
348336, 344, 3473eqtrrd 2769 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) = ((𝑑f𝑢)‘𝑋))
349348oveq1d 7368 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) + 1) = (((𝑑f𝑢)‘𝑋) + 1))
350349oveq1d 7368 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
351350mpteq2dva 5188 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
352351oveq2d 7369 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
353326, 352oveq12d 7371 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
35423adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp)
355106rabex 5281 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V
356355difexi 5272 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V
357356a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V)
358320fmpttd 7053 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
359 ovex 7386 . . . . . . . . . . . 12 ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
360359, 323fnmpti 6629 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
361360a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
362361, 318, 113fndmfifsupp 9287 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3631, 104, 6, 357, 358, 362gsumcl 19812 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
364322fmpttd 7053 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
365 ovex 7386 . . . . . . . . . . . 12 ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
366365, 324fnmpti 6629 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
367366a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
368367, 318, 113fndmfifsupp 9287 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3691, 104, 6, 357, 364, 368gsumcl 19812 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
370106rabex 5281 . . . . . . . . . 10 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V
371370a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V)
372278sseli 3933 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
373372, 321sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
374373fmpttd 7053 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}⟶(Base‘𝑅))
375 eqid 2729 . . . . . . . . . . . 12 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
376365, 375fnmpti 6629 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}
377376a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
378221, 279ssfid 9170 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ Fin)
379377, 378, 113fndmfifsupp 9287 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3801, 104, 6, 371, 374, 379gsumcl 19812 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
3811, 2, 354, 363, 369, 380grpassd 18842 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
382283, 353, 3813eqtrd 2768 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
383219, 382oveq12d 7371 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
384103, 115, 3833eqtr3d 2772 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
385 psdmul.m . . . . . 6 · = (.r𝑆)
3868adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
38741adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺𝐵)
3889, 10, 34, 385, 14, 386, 387, 19psrmulval 21869 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
389388oveq2d 7369 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
390107difexi 5272 . . . . . . 7 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V
391390a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V)
392 eldifi 4084 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
39338, 123syl 17 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢:𝐼⟶ℕ0)
394393adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢:𝐼⟶ℕ0)
39528ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑋𝐼)
396394, 395ffvelcdmd 7023 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝑢𝑋) ∈ ℕ0)
3971, 22, 25, 396, 50mulgnn0cld 18992 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
398392, 397sylan2 593 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
399398fmpttd 7053 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})⟶(Base‘𝑅))
400 eqid 2729 . . . . . . . . 9 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
401359, 400fnmpti 6629 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
402401a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
403 difssd 4090 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
40421, 403ssfid 9170 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ Fin)
405402, 404, 113fndmfifsupp 9287 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
4061, 104, 6, 391, 399, 405gsumcl 19812 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
4071, 2, 354, 369, 380grpcld 18844 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) ∈ (Base‘𝑅))
4081, 2, 354, 406, 363, 407grpassd 18842 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
409384, 389, 4083eqtr4d 2774 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
410409mpteq2dva 5188 . 2 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
4119, 10, 385, 4, 8, 41psrmulcl 21871 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
4129, 10, 14, 28, 411psdval 22062 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
413 psdmul.p . . . 4 + = (+g𝑆)
41423grpmgmd 18858 . . . . . 6 (𝜑𝑅 ∈ Mgm)
4159, 10, 414, 28, 8psdcl 22064 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4169, 10, 385, 4, 415, 41psrmulcl 21871 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∈ 𝐵)
4179, 10, 414, 28, 41psdcl 22064 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
4189, 10, 385, 4, 8, 417psrmulcl 21871 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) ∈ 𝐵)
4199, 10, 2, 413, 416, 418psradd 21862 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
4209, 1, 14, 10, 416psrelbas 21859 . . . . 5 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
421420ffnd 6657 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4229, 1, 14, 10, 418psrelbas 21859 . . . . 5 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
423422ffnd 6657 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
424106a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
425 inidm 4180 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
426415adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4279, 10, 34, 385, 14, 426, 387, 7psrmulval 21869 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))))
428355a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V)
4294ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
430 elrabi 3645 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4319, 1, 14, 10, 415psrelbas 21859 . . . . . . . . . . 11 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
432431adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
433432ffvelcdmda 7022 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
434430, 433sylan2 593 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
43542ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
43614, 243psrbagconcl 21852 . . . . . . . . . . 11 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
437436adantll 714 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
438 elrabi 3645 . . . . . . . . . 10 ((𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
439437, 438syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
440435, 439ffvelcdmd 7023 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘(𝑑f𝑏)) ∈ (Base‘𝑅))
4411, 34, 429, 434, 440ringcld 20163 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ (Base‘𝑅))
442441fmpttd 7053 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}⟶(Base‘𝑅))
443 ovex 7386 . . . . . . . . 9 (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ V
444 eqid 2729 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))
445443, 444fnmpti 6629 . . . . . . . 8 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
446445a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
447446, 221, 113fndmfifsupp 9287 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) finSupp (0g𝑅))
448 eqid 2729 . . . . . . 7 (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
449 df-of 7617 . . . . . . . . . 10 f + = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
450 vex 3442 . . . . . . . . . . 11 𝑢 ∈ V
451450a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 ∈ V)
452 ssv 3962 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V
453452a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V)
454 ssv 3962 . . . . . . . . . . 11 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V
455454a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V)
456449, 451, 453, 455elimampo 7490 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
457456biimpa 476 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
458 elrabi 3645 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
45914psrbagf 21843 . . . . . . . . . . . . . . . 16 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑚:𝐼⟶ℕ0)
460459ffund 6660 . . . . . . . . . . . . . . 15 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → Fun 𝑚)
461458, 460syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → Fun 𝑚)
462461funfnd 6517 . . . . . . . . . . . . 13 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 Fn dom 𝑚)
463462ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 Fn dom 𝑚)
464 velsn 4595 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
465 funmpt 6524 . . . . . . . . . . . . . . . 16 Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
466 funeq 6506 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (Fun 𝑛 ↔ Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
467465, 466mpbiri 258 . . . . . . . . . . . . . . 15 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → Fun 𝑛)
468467funfnd 6517 . . . . . . . . . . . . . 14 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → 𝑛 Fn dom 𝑛)
469464, 468sylbi 217 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 Fn dom 𝑛)
470469ad2antll 729 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑛 Fn dom 𝑛)
471 vex 3442 . . . . . . . . . . . . . 14 𝑚 ∈ V
472471dmex 7849 . . . . . . . . . . . . 13 dom 𝑚 ∈ V
473472a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑚 ∈ V)
474 vex 3442 . . . . . . . . . . . . . 14 𝑛 ∈ V
475474dmex 7849 . . . . . . . . . . . . 13 dom 𝑛 ∈ V
476475a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑛 ∈ V)
477 eqid 2729 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) = (dom 𝑚 ∩ dom 𝑛)
478 eqidd 2730 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
479 eqidd 2730 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
480463, 470, 473, 476, 477, 478, 479offval 7626 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
481480eqeq2d 2740 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
482 elsni 4596 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
483482oveq2d 7369 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
484483eqeq2d 2740 . . . . . . . . . . . 12 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
485484ad2antll 729 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
48613ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
487458, 459syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚:𝐼⟶ℕ0)
488487adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
489131a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
490 nn0cn 12412 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0𝑞 ∈ ℂ)
491 nn0cn 12412 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℕ0𝑟 ∈ ℂ)
492 nn0cn 12412 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ0𝑠 ∈ ℂ)
493 addsubass 11391 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
494490, 491, 492, 493syl3an 1160 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
495494adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
496486, 488, 489, 489, 495caofass 7657 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
497 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → 𝑖𝐼)
49856a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℕ0)
49968, 76, 497, 498fvmptd3 6957 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
500133, 133, 13, 13, 72, 499, 499offval 7626 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
501500oveq2d 7369 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
502501ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
503237subidi 11453 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)) = 0
504503mpteq2i 5191 . . . . . . . . . . . . . . . . . 18 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ 0)
505 fconstmpt 5685 . . . . . . . . . . . . . . . . . 18 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
506504, 505eqtr4i 2755 . . . . . . . . . . . . . . . . 17 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝐼 × {0})
507506oveq2i 7364 . . . . . . . . . . . . . . . 16 (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑚f + (𝐼 × {0}))
508 0zd 12501 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 0 ∈ ℤ)
509490addridd 11334 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0 → (𝑞 + 0) = 𝑞)
510509adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑞 ∈ ℕ0) → (𝑞 + 0) = 𝑞)
511486, 488, 508, 510caofid0r 7651 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
512507, 511eqtrid 2776 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
513496, 502, 5123eqtrd 2768 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
514 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
515513, 514eqeltrd 2828 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
516 oveq1 7360 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
517516eleq1d 2813 . . . . . . . . . . . . 13 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
518515, 517syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
519518adantrr 717 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
520485, 519sylbid 240 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
521481, 520sylbird 260 . . . . . . . . 9 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
522521rexlimdvva 3186 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
523457, 522mpd 15 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
524 simpr 484 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
52513mptexd 7164 . . . . . . . . . . 11 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V)
526 elsng 4593 . . . . . . . . . . 11 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
527525, 526syl 17 . . . . . . . . . 10 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
52868, 527mpbiri 258 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
529528ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
530449mpofun 7477 . . . . . . . . 9 Fun ∘f +
531530a1i 11 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → Fun ∘f + )
532 xpss 5639 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ (V × V)
533472inex1 5259 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) ∈ V
534533mptex 7163 . . . . . . . . . . 11 (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
535534rgen2w 3049 . . . . . . . . . 10 𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
536449dmmpoga 8015 . . . . . . . . . 10 (∀𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V → dom ∘f + = (V × V))
537535, 536mp1i 13 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → dom ∘f + = (V × V))
538532, 537sseqtrrid 3981 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ dom ∘f + )
539524, 529, 531, 538elovimad 7403 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})))
54013ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝐼 ∈ V)
541 elrabi 3645 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
54214psrbagf 21843 . . . . . . . . . . . . 13 (𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑣:𝐼⟶ℕ0)
543541, 542syl 17 . . . . . . . . . . . 12 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣:𝐼⟶ℕ0)
544543ad2antll 729 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣:𝐼⟶ℕ0)
545131a1i 11 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
546494adantl 481 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
547540, 544, 545, 545, 546caofass 7657 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
548133ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
54978adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
550548, 548, 540, 540, 72, 549, 549offval 7626 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
551550oveq2d 7369 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
552506oveq2i 7364 . . . . . . . . . . 11 (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑣f + (𝐼 × {0}))
553 0zd 12501 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 0 ∈ ℤ)
554 nn0cn 12412 . . . . . . . . . . . . . 14 (𝑝 ∈ ℕ0𝑝 ∈ ℂ)
555554addridd 11334 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ0 → (𝑝 + 0) = 𝑝)
556555adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
557540, 544, 553, 556caofid0r 7651 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝐼 × {0})) = 𝑣)
558552, 557eqtrid 2776 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑣)
559547, 551, 5583eqtrrd 2769 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
560 oveq1 7360 . . . . . . . . . 10 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
561560eqeq2d 2740 . . . . . . . . 9 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
562559, 561syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
56316ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
56414psrbagaddcl 21849 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
565458, 563, 564syl2an2 686 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
56614psrbagf 21843 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
567565, 566syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
568567adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
569 feq1 6634 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢:𝐼⟶ℕ0 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0))
570568, 569syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢:𝐼⟶ℕ0))
571485, 570sylbid 240 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢:𝐼⟶ℕ0))
572481, 571sylbird 260 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
573572rexlimdvva 3186 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
574457, 573mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℕ0)
575574adantrr 717 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢:𝐼⟶ℕ0)
576575ffvelcdmda 7022 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
577576nn0cnd 12465 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
578237a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
579577, 578npcand 11497 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
580579mpteq2dva 5188 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
581575ffnd 6657 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 Fn 𝐼)
582581, 548, 540, 540, 72offn 7630 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
583 eqidd 2730 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
584581, 548, 540, 540, 72, 583, 549ofval 7628 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
585582, 548, 540, 540, 72, 584, 549offval 7626 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
586575feqmptd 6895 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
587580, 585, 5863eqtr4rd 2775 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
588 oveq1 7360 . . . . . . . . . 10 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
589588eqeq2d 2740 . . . . . . . . 9 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
590587, 589syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
591562, 590impbid 212 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
592448, 523, 539, 591f1o2d 7607 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))–1-1-onto→{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
5931, 104, 6, 428, 442, 447, 592gsumf1o 19813 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))) = (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
594555adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
595486, 488, 508, 594caofid0r 7651 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
596507, 595eqtrid 2776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
597496, 502, 5963eqtrd 2768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
598597, 514eqeltrd 2828 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
599598, 517syl5ibrcom 247 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
600599adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
601485, 600sylbid 240 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
602481, 601sylbird 260 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
603602rexlimdvva 3186 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
604457, 603mpd 15 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
605 eqidd 2730 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
606 eqidd 2730 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))))
607 fveq2 6826 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
608 oveq2 7361 . . . . . . . . . . 11 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑑f𝑏) = (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
609608fveq2d 6830 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐺‘(𝑑f𝑏)) = (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
610607, 609oveq12d 7371 . . . . . . . . 9 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
611604, 605, 606, 610fmptco 7067 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
61228ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑋𝐼)
6138ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹𝐵)
614 elrabi 3645 . . . . . . . . . . . . . 14 ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
615604, 614syl 17 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6169, 10, 14, 612, 613, 615psdcoef 22063 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
617574ffnd 6657 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 Fn 𝐼)
618131a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
619618ffnd 6657 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
62013ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐼 ∈ V)
621 eqidd 2730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
622 iftrue 4484 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
623 1ex 11130 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
624622, 68, 623fvmpt 6934 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
625624adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
626617, 619, 620, 620, 72, 621, 625ofval 7628 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
627612, 626mpdan 687 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
628627oveq1d 7368 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (((𝑢𝑋) − 1) + 1))
629 nn0sscn 12407 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℂ
630629a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ℕ0 ⊆ ℂ)
631574, 630fssd 6673 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℂ)
632631, 612ffvelcdmd 7023 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℂ)
633 1cnd 11129 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 1 ∈ ℂ)
634632, 633npcand 11497 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋) − 1) + 1) = (𝑢𝑋))
635628, 634eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (𝑢𝑋))
636617, 619, 620, 620, 72offn 7630 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
637 eqidd 2730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
63878adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
639617, 619, 620, 620, 72, 637, 638ofval 7628 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
640574ffvelcdmda 7022 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
641640nn0cnd 12465 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
642237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
643641, 642npcand 11497 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
644620, 636, 619, 617, 639, 638, 643offveq 7643 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑢)
645644fveq2d 6830 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹𝑢))
646635, 645oveq12d 7371 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
647616, 646eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
64826ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑:𝐼⟶ℕ0)
649648ffvelcdmda 7022 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
650649nn0cnd 12465 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
651650, 641, 642subsub3d 11523 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0))) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
652651mpteq2dva 5188 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
65365adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑 Fn 𝐼)
654 eqidd 2730 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
655653, 636, 620, 620, 72, 654, 639offval 7626 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))))
656653, 619, 620, 620, 72offn 7630 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
657653, 619, 620, 620, 72, 654, 638ofval 7628 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
658656, 617, 620, 620, 72, 657, 637offval 7626 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
659652, 655, 6583eqtr4d 2774 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
660659fveq2d 6830 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
661647, 660oveq12d 7371 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
6624ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Ring)
663574, 612ffvelcdmd 7023 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℕ0)
664663nn0zd 12515 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℤ)
66536ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
666 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
66716ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
668 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
669 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
67014, 243, 669psrbagleadd1 21853 . . . . . . . . . . . . . . . . . . 19 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
671666, 667, 668, 670syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
672 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
673671, 672syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
674485, 673sylbid 240 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
675481, 674sylbird 260 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
676675rexlimdvva 3186 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
677457, 676mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
678 elrabi 3645 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
679677, 678syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
680665, 679ffvelcdmd 7023 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹𝑢) ∈ (Base‘𝑅))
68142ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
68219adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
68314, 669psrbagconcl 21852 . . . . . . . . . . . . . 14 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
684682, 677, 683syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
685 elrabi 3645 . . . . . . . . . . . . 13 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
686684, 685syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
687681, 686ffvelcdmd 7023 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
6881, 22, 34mulgass2 20212 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑢𝑋) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
689662, 664, 680, 687, 688syl13anc 1374 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
690661, 689eqtrd 2764 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
691690mpteq2dva 5188 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
692611, 691eqtrd 2764 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
693692oveq2d 7369 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
694 snex 5378 . . . . . . . . . 10 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ V
695355, 694xpex 7693 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∈ V
696695funimaex 6574 . . . . . . . 8 (Fun ∘f + → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
697530, 696mp1i 13 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
69824ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Mnd)
6991, 34, 662, 680, 687ringcld 20163 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
7001, 22, 698, 663, 699mulgnn0cld 18992 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
701 eqid 2729 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
702359, 701fnmpti 6629 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
703702a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
704703, 21, 113fndmfifsupp 9287 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
705462ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑚 Fn dom 𝑚)
706469adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑛 Fn dom 𝑛)
707472a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑚 ∈ V)
708475a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑛 ∈ V)
709 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
710 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
711705, 706, 707, 708, 477, 709, 710offval 7626 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
712711eqeq2d 2740 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
713712rexbidva 3151 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ ∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
71416ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
715 oveq2 7361 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
716715eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
717716rexsng 4630 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
718714, 717syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
719713, 718bitr3d 281 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
720719rexbidva 3151 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
721 breq1 5098 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
722 breq1 5098 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
723 fveq1 6825 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘𝑋) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋))
724723eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘𝑋) = 0 ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
725722, 724anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
726725notbid 318 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
727721, 726anbi12d 632 . . . . . . . . . . . . . . 15 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))))
728458, 714, 564syl2an2 686 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
729 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
730 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
73114, 243, 44psrbagleadd1 21853 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
732729, 714, 730, 731syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
733721elrab 3650 . . . . . . . . . . . . . . . . . 18 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
734733simprbi 496 . . . . . . . . . . . . . . . . 17 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
735732, 734syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
73628ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
737487adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
738737ffnd 6657 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 Fn 𝐼)
739133ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
74013ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
741 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑚𝑋) = (𝑚𝑋))
742624adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
743738, 739, 740, 740, 72, 741, 742ofval 7628 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
744736, 743mpdan 687 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
745737, 736ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚𝑋) ∈ ℕ0)
746 nn0p1nn 12441 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑋) ∈ ℕ0 → ((𝑚𝑋) + 1) ∈ ℕ)
747745, 746syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚𝑋) + 1) ∈ ℕ)
748744, 747eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ∈ ℕ)
749748nnne0d 12196 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ≠ 0)
750749neneqd 2930 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)
751750intnand 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
752735, 751jca 511 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
753727, 728, 752elrabd 3652 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
754 eleq1 2816 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
755753, 754syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
756 breq1 5098 . . . . . . . . . . . . . 14 (𝑘 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
757 elrabi 3645 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
758757adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
759131a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
760757, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢:𝐼⟶ℕ0)
761760adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢:𝐼⟶ℕ0)
76228ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑋𝐼)
763761, 762ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ0)
764339notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑘 = 𝑢 → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
765118, 764anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
766765elrab 3650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
767766simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
768767simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
769768adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
770769adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
771757, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 Fn 𝐼)
772771adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 Fn 𝐼)
773772adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢 Fn 𝐼)
77419adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
77588ffnd 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
776774, 775syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
777776adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
77813ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝐼 ∈ V)
779 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
780 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
781773, 777, 778, 778, 72, 779, 780ofrfval 7627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)))
782770, 781mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
783782r19.21bi 3221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
784783adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
78565ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝑑 Fn 𝐼)
78669a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
78713ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝐼 ∈ V)
788 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
78978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
790785, 786, 787, 787, 72, 788, 789ofval 7628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
791790an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
792158adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → if(𝑖 = 𝑋, 1, 0) = 0)
793792oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
79427ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑:𝐼⟶ℕ0)
795794ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
796795adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℕ0)
797796nn0cnd 12465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℂ)
798797addridd 11334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + 0) = (𝑑𝑖))
799791, 793, 7983eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = (𝑑𝑖))
800784, 799breqtrd 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ (𝑑𝑖))
801 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) = 0)
80227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑:𝐼⟶ℕ0)
803802, 762ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑𝑋) ∈ ℕ0)
804803nn0ge0d 12466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 0 ≤ (𝑑𝑋))
805804adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 0 ≤ (𝑑𝑋))
806801, 805eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) ≤ (𝑑𝑋))
807806adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑋) ≤ (𝑑𝑋))
808175, 800, 807pm2.61ne 3010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ (𝑑𝑖))
809808ralrimiva 3121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
81065adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑 Fn 𝐼)
811810adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑 Fn 𝐼)
812 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
813773, 811, 778, 778, 72, 779, 812ofrfval 7627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
814809, 813mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r𝑑)
815814ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → 𝑢r𝑑))
816767simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
817816adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
818 imnan 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢r𝑑 → ¬ (𝑢𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
819817, 818sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r𝑑 → ¬ (𝑢𝑋) = 0))
820819con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → ¬ 𝑢r𝑑))
821815, 820pm2.65d 196 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢𝑋) = 0)
822821neqned 2932 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ≠ 0)
823763, 822, 191sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ)
824823nnge1d 12194 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 1 ≤ (𝑢𝑋))
825824adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 1 ≤ (𝑢𝑋))
826173breq2d 5107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → (1 ≤ (𝑢𝑖) ↔ 1 ≤ (𝑢𝑋)))
827825, 826syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑖 = 𝑋 → 1 ≤ (𝑢𝑖)))
828827imp 406 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ 𝑖 = 𝑋) → 1 ≤ (𝑢𝑖))
829761ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
830829nn0ge0d 12466 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 0 ≤ (𝑢𝑖))
831830adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ ¬ 𝑖 = 𝑋) → 0 ≤ (𝑢𝑖))
832828, 831ifpimpda 1080 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
833 brif1 7450 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖) ↔ if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
834832, 833sylibr 234 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
835834ralrimiva 3121 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
83669a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
83713ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝐼 ∈ V)
83878adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
839 eqidd 2730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
840836, 772, 837, 837, 72, 838, 839ofrfval 7627 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢 ↔ ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖)))
841835, 840mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢)
84214psrbagcon 21850 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
843758, 759, 841, 842syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
844843simpld 494 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
845 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
846810, 836, 837, 837, 72, 845, 838ofval 7628 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
847772, 776, 837, 837, 72, 839, 846ofrfval 7627 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
848769, 847mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
849848r19.21bi 3221 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
850829nn0red 12464 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℝ)
85160a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
852802ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
853852nn0red 12464 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
854850, 851, 853lesubaddd 11735 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
855849, 854mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
856855ralrimiva 3121 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
857772, 836, 837, 837, 72offn 7630 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
858772, 836, 837, 837, 72, 839, 838ofval 7628 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
859857, 810, 837, 837, 72, 858, 845ofrfval 7627 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ↔ ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖)))
860856, 859mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑)
861756, 844, 860elrabd 3652 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
862829nn0cnd 12465 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
863237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
864862, 863npcand 11497 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
865864mpteq2dva 5188 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
866857, 836, 837, 837, 72, 858, 838offval 7626 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
867761feqmptd 6895 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
868865, 866, 8673eqtr4rd 2775 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
869 oveq1 7360 . . . . . . . . . . . . . 14 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
870869eqeq2d 2740 . . . . . . . . . . . . 13 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
871755, 861, 868, 870rspceb2dv 3583 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
872456, 720, 8713bitrd 305 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
873872eqrdv 2727 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
874 difrab 4271 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}
875873, 874eqtr4di 2782 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
876 difssd 4090 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
877875, 876eqsstrd 3972 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
878704, 877, 113fmptssfisupp 9303 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
879 difss 4089 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
880 disjdif 4425 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
881 ssdisj 4413 . . . . . . . . . 10 ((({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅)
882879, 880, 881mp2an 692 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
883882ineqcomi 4164 . . . . . . . 8 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅
884883a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅)
885279, 99psdmullem 22068 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
886875, 885eqtr4d 2767 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})))
8871, 104, 2, 6, 697, 700, 878, 884, 886gsumsplit2 19826 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
888693, 887eqtrd 2764 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
889427, 593, 8883eqtrd 2768 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
890417adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
8919, 10, 34, 385, 14, 386, 890, 7psrmulval 21869 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))))
89241ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺𝐵)
8939, 10, 14, 285, 892, 247psdcoef 22063 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
894267fveq2d 6830 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
895894oveq2d 7369 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
896893, 895eqtrd 2764 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
897896oveq2d 7369 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
898309nn0zd 12515 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ)
8991, 22, 34mulgass3 20256 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
900224, 898, 228, 271, 899syl13anc 1374 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
901897, 900eqtrd 2764 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
902901mpteq2dva 5188 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
903902oveq2d 7369 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
9041, 2, 6, 221, 321, 275, 282gsummptfidmsplit 19827 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
905891, 903, 9043eqtrd 2768 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
906421, 423, 424, 424, 425, 889, 905offval 7626 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
907419, 906eqtrd 2764 . 2 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
908410, 412, 9073eqtr4d 2774 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  ifcif 4478  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  ccnv 5622  dom cdm 5623  cima 5626  ccom 5627  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  r cofr 7616  m cmap 8760  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cn 12146  0cn0 12402  cz 12489  ..^cfzo 13575  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  Grpcgrp 18830  .gcmg 18964  CMndccmn 19677  Ringcrg 20136  CRingccrg 20137   mPwSer cmps 21829   mPSDer cpsd 22033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-tset 17198  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-mulg 18965  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-psr 21834  df-psd 22059
This theorem is referenced by:  psd1  22070  psdpw  22073
  Copyright terms: Public domain W3C validator