MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmul Structured version   Visualization version   GIF version

Theorem psdmul 22053
Description: Product rule for power series. An outline is available at https://github.com/icecream17/Stuff/blob/main/math/psdmul.pdf. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psdmul.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmul.b 𝐵 = (Base‘𝑆)
psdmul.p + = (+g𝑆)
psdmul.m · = (.r𝑆)
psdmul.r (𝜑𝑅 ∈ CRing)
psdmul.x (𝜑𝑋𝐼)
psdmul.f (𝜑𝐹𝐵)
psdmul.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdmul (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))

Proof of Theorem psdmul
Dummy variables 𝑏 𝑑 𝑖 𝑘 𝑚 𝑛 𝑜 𝑝 𝑞 𝑟 𝑠 𝑢 𝑣 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
3 psdmul.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43crngringd 20155 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
54ringcmnd 20193 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
7 simpr 484 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8 psdmul.f . . . . . . . . . . 11 (𝜑𝐹𝐵)
9 psdmul.s . . . . . . . . . . . 12 𝑆 = (𝐼 mPwSer 𝑅)
10 psdmul.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
11 reldmpsr 21823 . . . . . . . . . . . 12 Rel dom mPwSer
129, 10, 11strov2rcl 17187 . . . . . . . . . . 11 (𝐹𝐵𝐼 ∈ V)
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐼 ∈ V)
14 eqid 2729 . . . . . . . . . . 11 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1514psrbagsn 21970 . . . . . . . . . 10 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1613, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1716adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1814psrbagaddcl 21833 . . . . . . . 8 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
197, 17, 18syl2anc 584 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2014psrbaglefi 21835 . . . . . . 7 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
2119, 20syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
22 eqid 2729 . . . . . . 7 (.g𝑅) = (.g𝑅)
233crnggrpd 20156 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2423grpmndd 18878 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
2524ad2antrr 726 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Mnd)
2614psrbagf 21827 . . . . . . . . . . 11 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
28 psdmul.x . . . . . . . . . . 11 (𝜑𝑋𝐼)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
3027, 29ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
31 peano2nn0 12482 . . . . . . . . 9 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
3230, 31syl 17 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
3332adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑𝑋) + 1) ∈ ℕ0)
34 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
354ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Ring)
369, 1, 14, 10, 8psrelbas 21843 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
3736ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
38 elrabi 3654 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3938adantl 481 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4037, 39ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐹𝑢) ∈ (Base‘𝑅))
41 psdmul.g . . . . . . . . . . 11 (𝜑𝐺𝐵)
429, 1, 14, 10, 41psrelbas 21843 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4342ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
44 eqid 2729 . . . . . . . . . . . 12 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
4514, 44psrbagconcl 21836 . . . . . . . . . . 11 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
4619, 45sylan 580 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
47 elrabi 3654 . . . . . . . . . 10 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4846, 47syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4943, 48ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
501, 34, 35, 40, 49ringcld 20169 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
511, 22, 25, 33, 50mulgnn0cld 19027 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
52 disjdifr 4436 . . . . . . 7 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅
5352a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅)
54 1nn0 12458 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
55 0nn0 12457 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
5654, 55ifcli 4536 . . . . . . . . . . . . . . 15 if(𝑖 = 𝑋, 1, 0) ∈ ℕ0
5756nn0ge0i 12469 . . . . . . . . . . . . . 14 0 ≤ if(𝑖 = 𝑋, 1, 0)
5827ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
5958nn0red 12504 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
6056nn0rei 12453 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
6259, 61addge01d 11766 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (0 ≤ if(𝑖 = 𝑋, 1, 0) ↔ (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
6357, 62mpbii 233 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6463ralrimiva 3125 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6527ffnd 6689 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
6654, 55ifcli 4536 . . . . . . . . . . . . . . . . 17 if(𝑦 = 𝑋, 1, 0) ∈ ℕ0
6766elexi 3470 . . . . . . . . . . . . . . . 16 if(𝑦 = 𝑋, 1, 0) ∈ V
68 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
6967, 68fnmpti 6661 . . . . . . . . . . . . . . 15 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
7069a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7113adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
72 inidm 4190 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
7365, 70, 71, 71, 72offn 7666 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
74 eqidd 2730 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
75 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑖 → (𝑦 = 𝑋𝑖 = 𝑋))
7675ifbid 4512 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0))
7756elexi 3470 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ V
7876, 68, 77fvmpt 6968 . . . . . . . . . . . . . . 15 (𝑖𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
7978adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
8065, 70, 71, 71, 72, 74, 79ofval 7664 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
8165, 73, 71, 71, 72, 74, 80ofrfval 7663 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
8264, 81mpbird 257 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8382adantr 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8413ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
8514psrbagf 21827 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
8685adantl 481 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
8727adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
8814psrbagf 21827 . . . . . . . . . . . . 13 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
8919, 88syl 17 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
9089adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
91 nn0re 12451 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ0𝑞 ∈ ℝ)
92 nn0re 12451 . . . . . . . . . . . . 13 (𝑟 ∈ ℕ0𝑟 ∈ ℝ)
93 nn0re 12451 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
94 letr 11268 . . . . . . . . . . . . 13 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9591, 92, 93, 94syl3an 1160 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9695adantl 481 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9784, 86, 87, 90, 96caoftrn 7694 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘r𝑑𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) → 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9883, 97mpan2d 694 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘r𝑑𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9998ss2rabdv 4039 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
100 undifr 4446 . . . . . . . 8 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
10199, 100sylib 218 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
102101eqcomd 2735 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
1031, 2, 6, 21, 51, 53, 102gsummptfidmsplit 19860 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
104 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
105 ovex 7420 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
106105rabex 5294 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
107106rabex 5294 . . . . . . 7 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V
108107a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V)
109 ovex 7420 . . . . . . . . 9 ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ V
110 eqid 2729 . . . . . . . . 9 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
111109, 110fnmpti 6661 . . . . . . . 8 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
112111a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
113 fvexd 6873 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
114112, 21, 113fndmfifsupp 9329 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) finSupp (0g𝑅))
1151, 104, 22, 108, 50, 114, 6, 32gsummulg 19872 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
116 difrab 4281 . . . . . . . . . . 11 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}
117116eleq2i 2820 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)})
118 breq1 5110 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
119 breq1 5110 . . . . . . . . . . . . . 14 (𝑘 = 𝑢 → (𝑘r𝑑𝑢r𝑑))
120119notbid 318 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (¬ 𝑘r𝑑 ↔ ¬ 𝑢r𝑑))
121118, 120anbi12d 632 . . . . . . . . . . . 12 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
122121elrab 3659 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
12314psrbagf 21827 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢:𝐼⟶ℕ0)
124123ffnd 6689 . . . . . . . . . . . . . . . 16 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢 Fn 𝐼)
125124adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 Fn 𝐼)
12673adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
12713ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
128 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
12965adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
13066a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐼 → if(𝑦 = 𝑋, 1, 0) ∈ ℕ0)
13168, 130fmpti 7084 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0
132131a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
133132ffnd 6689 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
134133ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
135 eqidd 2730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
13678adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
137129, 134, 127, 127, 72, 135, 136ofval 7664 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
138125, 126, 127, 127, 72, 128, 137ofrfval 7663 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
139125, 129, 127, 127, 72, 128, 135ofrfval 7663 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
140139notbid 318 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
141 rexnal 3082 . . . . . . . . . . . . . . 15 (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
142140, 141bitr4di 289 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
143138, 142anbi12d 632 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑) ↔ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
14430ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ ℕ0)
145123adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢:𝐼⟶ℕ0)
14628adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
147145, 146ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
148147adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
149148adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ0)
150 nn0nlt0 12468 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑋) ∈ ℕ0 → ¬ (𝑑𝑋) < 0)
151144, 150syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑑𝑋) < 0)
15227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
153152ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
154153nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
155154addridd 11374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑𝑖) + 0) = (𝑑𝑖))
156155breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) ↔ (𝑢𝑖) ≤ (𝑑𝑖)))
157156biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖)))
158 ifnefalse 4500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖𝑋 → if(𝑖 = 𝑋, 1, 0) = 0)
159158oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
160159breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + 0)))
161160imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖𝑋 → (((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)) ↔ ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖))))
162157, 161syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖))))
163162imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)))
164163impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑖𝑋 → (𝑢𝑖) ≤ (𝑑𝑖)))
165164necon1bd 2943 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → 𝑖 = 𝑋))
166165ancrd 551 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
167166ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
168167ralimdva 3145 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → ∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
169168anim1d 611 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
170169imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
171 rexim 3070 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
172171imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
173 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑢𝑖) = (𝑢𝑋))
174 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑑𝑖) = (𝑑𝑋))
175173, 174breq12d 5120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ (𝑑𝑖) ↔ (𝑢𝑋) ≤ (𝑑𝑋)))
176175notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑋 → (¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
177176ceqsrexbv 3622 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) ↔ (𝑋𝐼 ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
178177simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
179172, 178syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
18030adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
181180nn0red 12504 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℝ)
182148nn0red 12504 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℝ)
183181, 182ltnled 11321 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) < (𝑢𝑋) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
184183biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)) → (𝑑𝑋) < (𝑢𝑋))
185179, 184sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
186170, 185syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
187 breq2 5111 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑋) = 0 → ((𝑑𝑋) < (𝑢𝑋) ↔ (𝑑𝑋) < 0))
188186, 187syl5ibcom 245 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑢𝑋) = 0 → (𝑑𝑋) < 0))
189151, 188mtod 198 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑢𝑋) = 0)
190189neqned 2932 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≠ 0)
191 elnnne0 12456 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋) ∈ ℕ ↔ ((𝑢𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ≠ 0))
192149, 190, 191sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ)
193 elfzo0 13661 . . . . . . . . . . . . . . . 16 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) ↔ ((𝑑𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ (𝑑𝑋) < (𝑢𝑋)))
194144, 192, 186, 193syl3anbrc 1344 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ (0..^(𝑢𝑋)))
195 fzostep1 13744 . . . . . . . . . . . . . . 15 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
196194, 195syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
197149nn0red 12504 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℝ)
19832ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℕ0)
199198nn0red 12504 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℝ)
20028ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
201 iftrue 4494 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑋 → if(𝑖 = 𝑋, 1, 0) = 1)
202174, 201oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑋) + 1))
203173, 202breq12d 5120 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
204203rspcv 3584 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝐼 → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
205200, 204syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
206205imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
207206adantrr 717 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
208197, 199, 207lensymd 11325 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) < (𝑢𝑋))
209208intn3an3d 1483 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
210 elfzo0 13661 . . . . . . . . . . . . . . 15 (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ↔ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
211209, 210sylnibr 329 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)))
212196, 211orcnd 878 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
213143, 212sylbida 592 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)) → ((𝑑𝑋) + 1) = (𝑢𝑋))
214213anasss 466 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
215122, 214sylan2b 594 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}) → ((𝑑𝑋) + 1) = (𝑢𝑋))
216117, 215sylan2b 594 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑑𝑋) + 1) = (𝑢𝑋))
217216oveq1d 7402 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
218217mpteq2dva 5200 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
219218oveq2d 7403 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
22014psrbaglefi 21835 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
221220adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
22224ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Mnd)
22332adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑𝑋) + 1) ∈ ℕ0)
2244ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
225 elrabi 3654 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
22636adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
227226ffvelcdmda 7056 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑢) ∈ (Base‘𝑅))
228225, 227sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐹𝑢) ∈ (Base‘𝑅))
22942ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23027adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑:𝐼⟶ℕ0)
231230ffvelcdmda 7056 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
232231nn0cnd 12505 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
233225, 123syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢:𝐼⟶ℕ0)
234233adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢:𝐼⟶ℕ0)
235234ffvelcdmda 7056 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
236235nn0cnd 12505 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
23756nn0cni 12454 . . . . . . . . . . . . . . . . 17 if(𝑖 = 𝑋, 1, 0) ∈ ℂ
238237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
239232, 236, 238subadd23d 11555 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
240232, 238, 236addsubassd 11553 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
241239, 240eqtr4d 2767 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
242241mpteq2dva 5200 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
243 eqid 2729 . . . . . . . . . . . . . . . . . . 19 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
24414, 243psrbagconcl 21836 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
245 elrabi 3654 . . . . . . . . . . . . . . . . . 18 ((𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
246244, 245syl 17 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
247246adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
24814psrbagf 21827 . . . . . . . . . . . . . . . 16 ((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f𝑢):𝐼⟶ℕ0)
249247, 248syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢):𝐼⟶ℕ0)
250249ffnd 6689 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) Fn 𝐼)
25169a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
25213ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
253230ffnd 6689 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 Fn 𝐼)
254234ffnd 6689 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 Fn 𝐼)
255 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
256 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
257253, 254, 252, 252, 72, 255, 256ofval 7664 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f𝑢)‘𝑖) = ((𝑑𝑖) − (𝑢𝑖)))
25878adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
259250, 251, 252, 252, 72, 257, 258offval 7662 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))))
260 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
26116ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
262260, 261, 18syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
263262, 88syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
264263ffnd 6689 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
265253, 251, 252, 252, 72, 255, 258ofval 7664 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
266264, 254, 252, 252, 72, 265, 256offval 7662 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
267242, 259, 2663eqtr4d 2774 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
26814psrbagaddcl 21833 . . . . . . . . . . . . 13 (((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
269247, 261, 268syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
270267, 269eqeltrrd 2829 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
271229, 270ffvelcdmd 7057 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
2721, 34, 224, 228, 271ringcld 20169 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
2731, 22, 222, 223, 272mulgnn0cld 19027 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
274 disjdifr 4436 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅
275274a1i 11 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅)
276 simpl 482 . . . . . . . . . . . . 13 ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑)
277276a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑))
278277ss2rabi 4040 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
279278a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
280 undifr 4446 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
281279, 280sylib 218 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
282281eqcomd 2735 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
2831, 2, 6, 221, 273, 275, 282gsummptfidmsplit 19860 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
284 eldifi 4094 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
28528ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
286 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
287 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
288253, 254, 252, 252, 72, 286, 287ofval 7664 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
289285, 288mpdan 687 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
290284, 289sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
291290oveq2d 7403 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))))
292234, 285ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢𝑋) ∈ ℕ0)
293284, 292sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℕ0)
294293nn0cnd 12505 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℂ)
29530nn0cnd 12505 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℂ)
296295adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑑𝑋) ∈ ℂ)
297294, 296pncan3d 11536 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))) = (𝑑𝑋))
298291, 297eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = (𝑑𝑋))
299298oveq1d 7402 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑑𝑋) + 1))
300249, 285ffvelcdmd 7057 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
301284, 300sylan2 593 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
302301nn0cnd 12505 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℂ)
303 1cnd 11169 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 1 ∈ ℂ)
304294, 302, 303addassd 11196 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
305299, 304eqtr3d 2766 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑𝑋) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
306305oveq1d 7402 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
30724ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 𝑅 ∈ Mnd)
308 peano2nn0 12482 . . . . . . . . . . . . . . 15 (((𝑑f𝑢)‘𝑋) ∈ ℕ0 → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
309300, 308syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
310284, 309sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
311284, 272sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
3121, 22, 2mulgnn0dir 19036 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ ((𝑢𝑋) ∈ ℕ0 ∧ (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0 ∧ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
313307, 293, 310, 311, 312syl13anc 1374 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
314306, 313eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
315314mpteq2dva 5200 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
316315oveq2d 7403 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
317 difssd 4100 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
318221, 317ssfid 9212 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ Fin)
3191, 22, 222, 292, 272mulgnn0cld 19027 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
320284, 319sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
3211, 22, 222, 309, 272mulgnn0cld 19027 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
322284, 321sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
323 eqid 2729 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
324 eqid 2729 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
3251, 2, 6, 318, 320, 322, 323, 324gsummptfidmadd 19855 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
326316, 325eqtrd 2764 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
32728ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑋𝐼)
32865adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑑 Fn 𝐼)
329 elrabi 3654 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
330329, 124syl 17 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 Fn 𝐼)
331330adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 Fn 𝐼)
33213ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝐼 ∈ V)
333 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
334 eqidd 2730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
335328, 331, 332, 332, 72, 333, 334ofval 7664 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
336327, 335mpdan 687 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
337 fveq1 6857 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → (𝑘𝑋) = (𝑢𝑋))
338337eqeq1d 2731 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → ((𝑘𝑋) = 0 ↔ (𝑢𝑋) = 0))
339119, 338anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
340339elrab 3659 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
341340simprbi 496 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
342341simprd 495 . . . . . . . . . . . . . . 15 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢𝑋) = 0)
343342adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑢𝑋) = 0)
344343oveq2d 7403 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − (𝑢𝑋)) = ((𝑑𝑋) − 0))
34530adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℕ0)
346345nn0cnd 12505 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℂ)
347346subid1d 11522 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − 0) = (𝑑𝑋))
348336, 344, 3473eqtrrd 2769 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) = ((𝑑f𝑢)‘𝑋))
349348oveq1d 7402 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) + 1) = (((𝑑f𝑢)‘𝑋) + 1))
350349oveq1d 7402 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
351350mpteq2dva 5200 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
352351oveq2d 7403 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
353326, 352oveq12d 7405 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
35423adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp)
355106rabex 5294 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V
356355difexi 5285 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V
357356a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V)
358320fmpttd 7087 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
359 ovex 7420 . . . . . . . . . . . 12 ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
360359, 323fnmpti 6661 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
361360a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
362361, 318, 113fndmfifsupp 9329 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3631, 104, 6, 357, 358, 362gsumcl 19845 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
364322fmpttd 7087 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
365 ovex 7420 . . . . . . . . . . . 12 ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
366365, 324fnmpti 6661 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
367366a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
368367, 318, 113fndmfifsupp 9329 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3691, 104, 6, 357, 364, 368gsumcl 19845 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
370106rabex 5294 . . . . . . . . . 10 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V
371370a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V)
372278sseli 3942 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
373372, 321sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
374373fmpttd 7087 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}⟶(Base‘𝑅))
375 eqid 2729 . . . . . . . . . . . 12 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
376365, 375fnmpti 6661 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}
377376a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
378221, 279ssfid 9212 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ Fin)
379377, 378, 113fndmfifsupp 9329 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3801, 104, 6, 371, 374, 379gsumcl 19845 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
3811, 2, 354, 363, 369, 380grpassd 18877 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
382283, 353, 3813eqtrd 2768 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
383219, 382oveq12d 7405 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
384103, 115, 3833eqtr3d 2772 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
385 psdmul.m . . . . . 6 · = (.r𝑆)
3868adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
38741adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺𝐵)
3889, 10, 34, 385, 14, 386, 387, 19psrmulval 21853 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
389388oveq2d 7403 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
390107difexi 5285 . . . . . . 7 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V
391390a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V)
392 eldifi 4094 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
39338, 123syl 17 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢:𝐼⟶ℕ0)
394393adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢:𝐼⟶ℕ0)
39528ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑋𝐼)
396394, 395ffvelcdmd 7057 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝑢𝑋) ∈ ℕ0)
3971, 22, 25, 396, 50mulgnn0cld 19027 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
398392, 397sylan2 593 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
399398fmpttd 7087 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})⟶(Base‘𝑅))
400 eqid 2729 . . . . . . . . 9 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
401359, 400fnmpti 6661 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
402401a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
403 difssd 4100 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
40421, 403ssfid 9212 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ Fin)
405402, 404, 113fndmfifsupp 9329 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
4061, 104, 6, 391, 399, 405gsumcl 19845 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
4071, 2, 354, 369, 380grpcld 18879 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) ∈ (Base‘𝑅))
4081, 2, 354, 406, 363, 407grpassd 18877 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
409384, 389, 4083eqtr4d 2774 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
410409mpteq2dva 5200 . 2 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
4119, 10, 385, 4, 8, 41psrmulcl 21855 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
4129, 10, 14, 28, 411psdval 22046 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
413 psdmul.p . . . 4 + = (+g𝑆)
41423grpmgmd 18893 . . . . . 6 (𝜑𝑅 ∈ Mgm)
4159, 10, 414, 28, 8psdcl 22048 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4169, 10, 385, 4, 415, 41psrmulcl 21855 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∈ 𝐵)
4179, 10, 414, 28, 41psdcl 22048 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
4189, 10, 385, 4, 8, 417psrmulcl 21855 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) ∈ 𝐵)
4199, 10, 2, 413, 416, 418psradd 21846 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
4209, 1, 14, 10, 416psrelbas 21843 . . . . 5 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
421420ffnd 6689 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4229, 1, 14, 10, 418psrelbas 21843 . . . . 5 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
423422ffnd 6689 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
424106a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
425 inidm 4190 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
426415adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4279, 10, 34, 385, 14, 426, 387, 7psrmulval 21853 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))))
428355a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V)
4294ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
430 elrabi 3654 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4319, 1, 14, 10, 415psrelbas 21843 . . . . . . . . . . 11 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
432431adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
433432ffvelcdmda 7056 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
434430, 433sylan2 593 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
43542ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
43614, 243psrbagconcl 21836 . . . . . . . . . . 11 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
437436adantll 714 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
438 elrabi 3654 . . . . . . . . . 10 ((𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
439437, 438syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
440435, 439ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘(𝑑f𝑏)) ∈ (Base‘𝑅))
4411, 34, 429, 434, 440ringcld 20169 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ (Base‘𝑅))
442441fmpttd 7087 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}⟶(Base‘𝑅))
443 ovex 7420 . . . . . . . . 9 (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ V
444 eqid 2729 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))
445443, 444fnmpti 6661 . . . . . . . 8 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
446445a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
447446, 221, 113fndmfifsupp 9329 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) finSupp (0g𝑅))
448 eqid 2729 . . . . . . 7 (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
449 df-of 7653 . . . . . . . . . 10 f + = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
450 vex 3451 . . . . . . . . . . 11 𝑢 ∈ V
451450a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 ∈ V)
452 ssv 3971 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V
453452a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V)
454 ssv 3971 . . . . . . . . . . 11 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V
455454a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V)
456449, 451, 453, 455elimampo 7526 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
457456biimpa 476 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
458 elrabi 3654 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
45914psrbagf 21827 . . . . . . . . . . . . . . . 16 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑚:𝐼⟶ℕ0)
460459ffund 6692 . . . . . . . . . . . . . . 15 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → Fun 𝑚)
461458, 460syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → Fun 𝑚)
462461funfnd 6547 . . . . . . . . . . . . 13 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 Fn dom 𝑚)
463462ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 Fn dom 𝑚)
464 velsn 4605 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
465 funmpt 6554 . . . . . . . . . . . . . . . 16 Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
466 funeq 6536 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (Fun 𝑛 ↔ Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
467465, 466mpbiri 258 . . . . . . . . . . . . . . 15 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → Fun 𝑛)
468467funfnd 6547 . . . . . . . . . . . . . 14 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → 𝑛 Fn dom 𝑛)
469464, 468sylbi 217 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 Fn dom 𝑛)
470469ad2antll 729 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑛 Fn dom 𝑛)
471 vex 3451 . . . . . . . . . . . . . 14 𝑚 ∈ V
472471dmex 7885 . . . . . . . . . . . . 13 dom 𝑚 ∈ V
473472a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑚 ∈ V)
474 vex 3451 . . . . . . . . . . . . . 14 𝑛 ∈ V
475474dmex 7885 . . . . . . . . . . . . 13 dom 𝑛 ∈ V
476475a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑛 ∈ V)
477 eqid 2729 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) = (dom 𝑚 ∩ dom 𝑛)
478 eqidd 2730 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
479 eqidd 2730 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
480463, 470, 473, 476, 477, 478, 479offval 7662 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
481480eqeq2d 2740 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
482 elsni 4606 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
483482oveq2d 7403 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
484483eqeq2d 2740 . . . . . . . . . . . 12 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
485484ad2antll 729 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
48613ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
487458, 459syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚:𝐼⟶ℕ0)
488487adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
489131a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
490 nn0cn 12452 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0𝑞 ∈ ℂ)
491 nn0cn 12452 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℕ0𝑟 ∈ ℂ)
492 nn0cn 12452 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ0𝑠 ∈ ℂ)
493 addsubass 11431 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
494490, 491, 492, 493syl3an 1160 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
495494adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
496486, 488, 489, 489, 495caofass 7693 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
497 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → 𝑖𝐼)
49856a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℕ0)
49968, 76, 497, 498fvmptd3 6991 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
500133, 133, 13, 13, 72, 499, 499offval 7662 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
501500oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
502501ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
503237subidi 11493 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)) = 0
504503mpteq2i 5203 . . . . . . . . . . . . . . . . . 18 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ 0)
505 fconstmpt 5700 . . . . . . . . . . . . . . . . . 18 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
506504, 505eqtr4i 2755 . . . . . . . . . . . . . . . . 17 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝐼 × {0})
507506oveq2i 7398 . . . . . . . . . . . . . . . 16 (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑚f + (𝐼 × {0}))
508 0zd 12541 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 0 ∈ ℤ)
509490addridd 11374 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0 → (𝑞 + 0) = 𝑞)
510509adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑞 ∈ ℕ0) → (𝑞 + 0) = 𝑞)
511486, 488, 508, 510caofid0r 7687 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
512507, 511eqtrid 2776 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
513496, 502, 5123eqtrd 2768 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
514 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
515513, 514eqeltrd 2828 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
516 oveq1 7394 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
517516eleq1d 2813 . . . . . . . . . . . . 13 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
518515, 517syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
519518adantrr 717 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
520485, 519sylbid 240 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
521481, 520sylbird 260 . . . . . . . . 9 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
522521rexlimdvva 3194 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
523457, 522mpd 15 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
524 simpr 484 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
52513mptexd 7198 . . . . . . . . . . 11 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V)
526 elsng 4603 . . . . . . . . . . 11 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
527525, 526syl 17 . . . . . . . . . 10 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
52868, 527mpbiri 258 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
529528ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
530449mpofun 7513 . . . . . . . . 9 Fun ∘f +
531530a1i 11 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → Fun ∘f + )
532 xpss 5654 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ (V × V)
533472inex1 5272 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) ∈ V
534533mptex 7197 . . . . . . . . . . 11 (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
535534rgen2w 3049 . . . . . . . . . 10 𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
536449dmmpoga 8052 . . . . . . . . . 10 (∀𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V → dom ∘f + = (V × V))
537535, 536mp1i 13 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → dom ∘f + = (V × V))
538532, 537sseqtrrid 3990 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ dom ∘f + )
539524, 529, 531, 538elovimad 7437 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})))
54013ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝐼 ∈ V)
541 elrabi 3654 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
54214psrbagf 21827 . . . . . . . . . . . . 13 (𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑣:𝐼⟶ℕ0)
543541, 542syl 17 . . . . . . . . . . . 12 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣:𝐼⟶ℕ0)
544543ad2antll 729 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣:𝐼⟶ℕ0)
545131a1i 11 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
546494adantl 481 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
547540, 544, 545, 545, 546caofass 7693 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
548133ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
54978adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
550548, 548, 540, 540, 72, 549, 549offval 7662 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
551550oveq2d 7403 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
552506oveq2i 7398 . . . . . . . . . . 11 (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑣f + (𝐼 × {0}))
553 0zd 12541 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 0 ∈ ℤ)
554 nn0cn 12452 . . . . . . . . . . . . . 14 (𝑝 ∈ ℕ0𝑝 ∈ ℂ)
555554addridd 11374 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ0 → (𝑝 + 0) = 𝑝)
556555adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
557540, 544, 553, 556caofid0r 7687 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝐼 × {0})) = 𝑣)
558552, 557eqtrid 2776 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑣)
559547, 551, 5583eqtrrd 2769 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
560 oveq1 7394 . . . . . . . . . 10 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
561560eqeq2d 2740 . . . . . . . . 9 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
562559, 561syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
56316ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
56414psrbagaddcl 21833 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
565458, 563, 564syl2an2 686 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
56614psrbagf 21827 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
567565, 566syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
568567adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
569 feq1 6666 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢:𝐼⟶ℕ0 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0))
570568, 569syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢:𝐼⟶ℕ0))
571485, 570sylbid 240 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢:𝐼⟶ℕ0))
572481, 571sylbird 260 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
573572rexlimdvva 3194 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
574457, 573mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℕ0)
575574adantrr 717 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢:𝐼⟶ℕ0)
576575ffvelcdmda 7056 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
577576nn0cnd 12505 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
578237a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
579577, 578npcand 11537 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
580579mpteq2dva 5200 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
581575ffnd 6689 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 Fn 𝐼)
582581, 548, 540, 540, 72offn 7666 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
583 eqidd 2730 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
584581, 548, 540, 540, 72, 583, 549ofval 7664 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
585582, 548, 540, 540, 72, 584, 549offval 7662 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
586575feqmptd 6929 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
587580, 585, 5863eqtr4rd 2775 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
588 oveq1 7394 . . . . . . . . . 10 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
589588eqeq2d 2740 . . . . . . . . 9 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
590587, 589syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
591562, 590impbid 212 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
592448, 523, 539, 591f1o2d 7643 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))–1-1-onto→{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
5931, 104, 6, 428, 442, 447, 592gsumf1o 19846 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))) = (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
594555adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
595486, 488, 508, 594caofid0r 7687 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
596507, 595eqtrid 2776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
597496, 502, 5963eqtrd 2768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
598597, 514eqeltrd 2828 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
599598, 517syl5ibrcom 247 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
600599adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
601485, 600sylbid 240 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
602481, 601sylbird 260 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
603602rexlimdvva 3194 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
604457, 603mpd 15 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
605 eqidd 2730 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
606 eqidd 2730 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))))
607 fveq2 6858 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
608 oveq2 7395 . . . . . . . . . . 11 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑑f𝑏) = (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
609608fveq2d 6862 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐺‘(𝑑f𝑏)) = (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
610607, 609oveq12d 7405 . . . . . . . . 9 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
611604, 605, 606, 610fmptco 7101 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
61228ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑋𝐼)
6138ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹𝐵)
614 elrabi 3654 . . . . . . . . . . . . . 14 ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
615604, 614syl 17 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6169, 10, 14, 612, 613, 615psdcoef 22047 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
617574ffnd 6689 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 Fn 𝐼)
618131a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
619618ffnd 6689 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
62013ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐼 ∈ V)
621 eqidd 2730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
622 iftrue 4494 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
623 1ex 11170 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
624622, 68, 623fvmpt 6968 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
625624adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
626617, 619, 620, 620, 72, 621, 625ofval 7664 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
627612, 626mpdan 687 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
628627oveq1d 7402 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (((𝑢𝑋) − 1) + 1))
629 nn0sscn 12447 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℂ
630629a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ℕ0 ⊆ ℂ)
631574, 630fssd 6705 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℂ)
632631, 612ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℂ)
633 1cnd 11169 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 1 ∈ ℂ)
634632, 633npcand 11537 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋) − 1) + 1) = (𝑢𝑋))
635628, 634eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (𝑢𝑋))
636617, 619, 620, 620, 72offn 7666 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
637 eqidd 2730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
63878adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
639617, 619, 620, 620, 72, 637, 638ofval 7664 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
640574ffvelcdmda 7056 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
641640nn0cnd 12505 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
642237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
643641, 642npcand 11537 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
644620, 636, 619, 617, 639, 638, 643offveq 7679 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑢)
645644fveq2d 6862 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹𝑢))
646635, 645oveq12d 7405 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
647616, 646eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
64826ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑:𝐼⟶ℕ0)
649648ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
650649nn0cnd 12505 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
651650, 641, 642subsub3d 11563 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0))) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
652651mpteq2dva 5200 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
65365adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑 Fn 𝐼)
654 eqidd 2730 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
655653, 636, 620, 620, 72, 654, 639offval 7662 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))))
656653, 619, 620, 620, 72offn 7666 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
657653, 619, 620, 620, 72, 654, 638ofval 7664 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
658656, 617, 620, 620, 72, 657, 637offval 7662 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
659652, 655, 6583eqtr4d 2774 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
660659fveq2d 6862 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
661647, 660oveq12d 7405 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
6624ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Ring)
663574, 612ffvelcdmd 7057 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℕ0)
664663nn0zd 12555 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℤ)
66536ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
666 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
66716ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
668 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
669 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
67014, 243, 669psrbagleadd1 21837 . . . . . . . . . . . . . . . . . . 19 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
671666, 667, 668, 670syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
672 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
673671, 672syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
674485, 673sylbid 240 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
675481, 674sylbird 260 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
676675rexlimdvva 3194 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
677457, 676mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
678 elrabi 3654 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
679677, 678syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
680665, 679ffvelcdmd 7057 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹𝑢) ∈ (Base‘𝑅))
68142ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
68219adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
68314, 669psrbagconcl 21836 . . . . . . . . . . . . . 14 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
684682, 677, 683syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
685 elrabi 3654 . . . . . . . . . . . . 13 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
686684, 685syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
687681, 686ffvelcdmd 7057 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
6881, 22, 34mulgass2 20218 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑢𝑋) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
689662, 664, 680, 687, 688syl13anc 1374 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
690661, 689eqtrd 2764 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
691690mpteq2dva 5200 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
692611, 691eqtrd 2764 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
693692oveq2d 7403 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
694 snex 5391 . . . . . . . . . 10 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ V
695355, 694xpex 7729 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∈ V
696695funimaex 6605 . . . . . . . 8 (Fun ∘f + → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
697530, 696mp1i 13 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
69824ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Mnd)
6991, 34, 662, 680, 687ringcld 20169 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
7001, 22, 698, 663, 699mulgnn0cld 19027 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
701 eqid 2729 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
702359, 701fnmpti 6661 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
703702a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
704703, 21, 113fndmfifsupp 9329 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
705462ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑚 Fn dom 𝑚)
706469adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑛 Fn dom 𝑛)
707472a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑚 ∈ V)
708475a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑛 ∈ V)
709 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
710 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
711705, 706, 707, 708, 477, 709, 710offval 7662 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
712711eqeq2d 2740 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
713712rexbidva 3155 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ ∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
71416ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
715 oveq2 7395 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
716715eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
717716rexsng 4640 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
718714, 717syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
719713, 718bitr3d 281 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
720719rexbidva 3155 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
721 breq1 5110 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
722 breq1 5110 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
723 fveq1 6857 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘𝑋) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋))
724723eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘𝑋) = 0 ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
725722, 724anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
726725notbid 318 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
727721, 726anbi12d 632 . . . . . . . . . . . . . . 15 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))))
728458, 714, 564syl2an2 686 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
729 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
730 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
73114, 243, 44psrbagleadd1 21837 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
732729, 714, 730, 731syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
733721elrab 3659 . . . . . . . . . . . . . . . . . 18 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
734733simprbi 496 . . . . . . . . . . . . . . . . 17 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
735732, 734syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
73628ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
737487adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
738737ffnd 6689 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 Fn 𝐼)
739133ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
74013ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
741 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑚𝑋) = (𝑚𝑋))
742624adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
743738, 739, 740, 740, 72, 741, 742ofval 7664 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
744736, 743mpdan 687 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
745737, 736ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚𝑋) ∈ ℕ0)
746 nn0p1nn 12481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑋) ∈ ℕ0 → ((𝑚𝑋) + 1) ∈ ℕ)
747745, 746syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚𝑋) + 1) ∈ ℕ)
748744, 747eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ∈ ℕ)
749748nnne0d 12236 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ≠ 0)
750749neneqd 2930 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)
751750intnand 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
752735, 751jca 511 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
753727, 728, 752elrabd 3661 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
754 eleq1 2816 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
755753, 754syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
756 breq1 5110 . . . . . . . . . . . . . 14 (𝑘 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
757 elrabi 3654 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
758757adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
759131a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
760757, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢:𝐼⟶ℕ0)
761760adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢:𝐼⟶ℕ0)
76228ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑋𝐼)
763761, 762ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ0)
764339notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑘 = 𝑢 → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
765118, 764anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
766765elrab 3659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
767766simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
768767simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
769768adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
770769adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
771757, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 Fn 𝐼)
772771adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 Fn 𝐼)
773772adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢 Fn 𝐼)
77419adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
77588ffnd 6689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
776774, 775syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
777776adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
77813ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝐼 ∈ V)
779 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
780 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
781773, 777, 778, 778, 72, 779, 780ofrfval 7663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)))
782770, 781mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
783782r19.21bi 3229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
784783adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
78565ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝑑 Fn 𝐼)
78669a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
78713ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝐼 ∈ V)
788 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
78978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
790785, 786, 787, 787, 72, 788, 789ofval 7664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
791790an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
792158adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → if(𝑖 = 𝑋, 1, 0) = 0)
793792oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
79427ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑:𝐼⟶ℕ0)
795794ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
796795adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℕ0)
797796nn0cnd 12505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℂ)
798797addridd 11374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + 0) = (𝑑𝑖))
799791, 793, 7983eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = (𝑑𝑖))
800784, 799breqtrd 5133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ (𝑑𝑖))
801 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) = 0)
80227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑:𝐼⟶ℕ0)
803802, 762ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑𝑋) ∈ ℕ0)
804803nn0ge0d 12506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 0 ≤ (𝑑𝑋))
805804adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 0 ≤ (𝑑𝑋))
806801, 805eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) ≤ (𝑑𝑋))
807806adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑋) ≤ (𝑑𝑋))
808175, 800, 807pm2.61ne 3010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ (𝑑𝑖))
809808ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
81065adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑 Fn 𝐼)
811810adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑 Fn 𝐼)
812 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
813773, 811, 778, 778, 72, 779, 812ofrfval 7663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
814809, 813mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r𝑑)
815814ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → 𝑢r𝑑))
816767simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
817816adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
818 imnan 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢r𝑑 → ¬ (𝑢𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
819817, 818sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r𝑑 → ¬ (𝑢𝑋) = 0))
820819con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → ¬ 𝑢r𝑑))
821815, 820pm2.65d 196 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢𝑋) = 0)
822821neqned 2932 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ≠ 0)
823763, 822, 191sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ)
824823nnge1d 12234 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 1 ≤ (𝑢𝑋))
825824adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 1 ≤ (𝑢𝑋))
826173breq2d 5119 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → (1 ≤ (𝑢𝑖) ↔ 1 ≤ (𝑢𝑋)))
827825, 826syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑖 = 𝑋 → 1 ≤ (𝑢𝑖)))
828827imp 406 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ 𝑖 = 𝑋) → 1 ≤ (𝑢𝑖))
829761ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
830829nn0ge0d 12506 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 0 ≤ (𝑢𝑖))
831830adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ ¬ 𝑖 = 𝑋) → 0 ≤ (𝑢𝑖))
832828, 831ifpimpda 1080 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
833 brif1 7486 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖) ↔ if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
834832, 833sylibr 234 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
835834ralrimiva 3125 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
83669a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
83713ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝐼 ∈ V)
83878adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
839 eqidd 2730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
840836, 772, 837, 837, 72, 838, 839ofrfval 7663 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢 ↔ ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖)))
841835, 840mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢)
84214psrbagcon 21834 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
843758, 759, 841, 842syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
844843simpld 494 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
845 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
846810, 836, 837, 837, 72, 845, 838ofval 7664 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
847772, 776, 837, 837, 72, 839, 846ofrfval 7663 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
848769, 847mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
849848r19.21bi 3229 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
850829nn0red 12504 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℝ)
85160a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
852802ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
853852nn0red 12504 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
854850, 851, 853lesubaddd 11775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
855849, 854mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
856855ralrimiva 3125 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
857772, 836, 837, 837, 72offn 7666 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
858772, 836, 837, 837, 72, 839, 838ofval 7664 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
859857, 810, 837, 837, 72, 858, 845ofrfval 7663 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ↔ ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖)))
860856, 859mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑)
861756, 844, 860elrabd 3661 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
862829nn0cnd 12505 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
863237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
864862, 863npcand 11537 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
865864mpteq2dva 5200 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
866857, 836, 837, 837, 72, 858, 838offval 7662 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
867761feqmptd 6929 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
868865, 866, 8673eqtr4rd 2775 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
869 oveq1 7394 . . . . . . . . . . . . . 14 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
870869eqeq2d 2740 . . . . . . . . . . . . 13 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
871755, 861, 868, 870rspceb2dv 3592 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
872456, 720, 8713bitrd 305 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
873872eqrdv 2727 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
874 difrab 4281 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}
875873, 874eqtr4di 2782 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
876 difssd 4100 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
877875, 876eqsstrd 3981 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
878704, 877, 113fmptssfisupp 9345 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
879 difss 4099 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
880 disjdif 4435 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
881 ssdisj 4423 . . . . . . . . . 10 ((({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅)
882879, 880, 881mp2an 692 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
883882ineqcomi 4174 . . . . . . . 8 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅
884883a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅)
885279, 99psdmullem 22052 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
886875, 885eqtr4d 2767 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})))
8871, 104, 2, 6, 697, 700, 878, 884, 886gsumsplit2 19859 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
888693, 887eqtrd 2764 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
889427, 593, 8883eqtrd 2768 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
890417adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
8919, 10, 34, 385, 14, 386, 890, 7psrmulval 21853 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))))
89241ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺𝐵)
8939, 10, 14, 285, 892, 247psdcoef 22047 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
894267fveq2d 6862 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
895894oveq2d 7403 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
896893, 895eqtrd 2764 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
897896oveq2d 7403 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
898309nn0zd 12555 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ)
8991, 22, 34mulgass3 20262 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
900224, 898, 228, 271, 899syl13anc 1374 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
901897, 900eqtrd 2764 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
902901mpteq2dva 5200 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
903902oveq2d 7403 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
9041, 2, 6, 221, 321, 275, 282gsummptfidmsplit 19860 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
905891, 903, 9043eqtrd 2768 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
906421, 423, 424, 424, 425, 889, 905offval 7662 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
907419, 906eqtrd 2764 . 2 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
908410, 412, 9073eqtr4d 2774 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  cima 5641  ccom 5642  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  r cofr 7652  m cmap 8799  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  ..^cfzo 13615  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  Grpcgrp 18865  .gcmg 18999  CMndccmn 19710  Ringcrg 20142  CRingccrg 20143   mPwSer cmps 21813   mPSDer cpsd 22017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-psr 21818  df-psd 22043
This theorem is referenced by:  psd1  22054  psdpw  22057
  Copyright terms: Public domain W3C validator