MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmul Structured version   Visualization version   GIF version

Theorem psdmul 22113
Description: Product rule for power series. An outline is available at https://github.com/icecream17/Stuff/blob/main/math/psdmul.pdf. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psdmul.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmul.b 𝐵 = (Base‘𝑆)
psdmul.p + = (+g𝑆)
psdmul.m · = (.r𝑆)
psdmul.i (𝜑𝐼𝑉)
psdmul.r (𝜑𝑅 ∈ CRing)
psdmul.x (𝜑𝑋𝐼)
psdmul.f (𝜑𝐹𝐵)
psdmul.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdmul (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))

Proof of Theorem psdmul
Dummy variables 𝑏 𝑑 𝑖 𝑘 𝑚 𝑛 𝑜 𝑝 𝑞 𝑟 𝑠 𝑢 𝑣 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2725 . . . . . 6 (+g𝑅) = (+g𝑅)
3 psdmul.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43crngringd 20198 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
54ringcmnd 20232 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
7 simpr 483 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8 psdmul.i . . . . . . . . . 10 (𝜑𝐼𝑉)
9 eqid 2725 . . . . . . . . . . 11 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
109psrbagsn 22029 . . . . . . . . . 10 (𝐼𝑉 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
118, 10syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1211adantr 479 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
139psrbagaddcl 21878 . . . . . . . 8 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
147, 12, 13syl2anc 582 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
159psrbaglefi 21882 . . . . . . 7 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
1614, 15syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
17 eqid 2725 . . . . . . 7 (.g𝑅) = (.g𝑅)
183crnggrpd 20199 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
1918grpmndd 18911 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
2019ad2antrr 724 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Mnd)
219psrbagf 21868 . . . . . . . . . . 11 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
2221adantl 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
23 psdmul.x . . . . . . . . . . 11 (𝜑𝑋𝐼)
2423adantr 479 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
2522, 24ffvelcdmd 7094 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
26 peano2nn0 12545 . . . . . . . . 9 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
2827adantr 479 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑𝑋) + 1) ∈ ℕ0)
29 eqid 2725 . . . . . . . 8 (.r𝑅) = (.r𝑅)
304ad2antrr 724 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Ring)
31 psdmul.s . . . . . . . . . . 11 𝑆 = (𝐼 mPwSer 𝑅)
32 psdmul.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
33 psdmul.f . . . . . . . . . . 11 (𝜑𝐹𝐵)
3431, 1, 9, 32, 33psrelbas 21896 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
3534ad2antrr 724 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
36 elrabi 3673 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3736adantl 480 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3835, 37ffvelcdmd 7094 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐹𝑢) ∈ (Base‘𝑅))
39 psdmul.g . . . . . . . . . . 11 (𝜑𝐺𝐵)
4031, 1, 9, 32, 39psrelbas 21896 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4140ad2antrr 724 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
42 eqid 2725 . . . . . . . . . . . 12 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
439, 42psrbagconcl 21884 . . . . . . . . . . 11 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
4414, 43sylan 578 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
45 elrabi 3673 . . . . . . . . . 10 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4644, 45syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4741, 46ffvelcdmd 7094 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
481, 29, 30, 38, 47ringcld 20211 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
491, 17, 20, 28, 48mulgnn0cld 19058 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
50 disjdifr 4474 . . . . . . 7 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅
5150a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅)
52 1nn0 12521 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
53 0nn0 12520 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
5452, 53ifcli 4577 . . . . . . . . . . . . . . 15 if(𝑖 = 𝑋, 1, 0) ∈ ℕ0
5554nn0ge0i 12532 . . . . . . . . . . . . . 14 0 ≤ if(𝑖 = 𝑋, 1, 0)
5622ffvelcdmda 7093 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
5756nn0red 12566 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
5854nn0rei 12516 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
6057, 59addge01d 11834 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (0 ≤ if(𝑖 = 𝑋, 1, 0) ↔ (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
6155, 60mpbii 232 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6261ralrimiva 3135 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6322ffnd 6724 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
6452, 53ifcli 4577 . . . . . . . . . . . . . . . . 17 if(𝑦 = 𝑋, 1, 0) ∈ ℕ0
6564elexi 3482 . . . . . . . . . . . . . . . 16 if(𝑦 = 𝑋, 1, 0) ∈ V
66 eqid 2725 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
6765, 66fnmpti 6699 . . . . . . . . . . . . . . 15 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
6867a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
698adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
70 inidm 4217 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
7163, 68, 69, 69, 70offn 7698 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
72 eqidd 2726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
73 eqeq1 2729 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑖 → (𝑦 = 𝑋𝑖 = 𝑋))
7473ifbid 4553 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0))
7554elexi 3482 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ V
7674, 66, 75fvmpt 7004 . . . . . . . . . . . . . . 15 (𝑖𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
7776adantl 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
7863, 68, 69, 69, 70, 72, 77ofval 7696 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
7963, 71, 69, 69, 70, 72, 78ofrfval 7695 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
8062, 79mpbird 256 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8180adantr 479 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
828ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
839psrbagf 21868 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
8483adantl 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
8522adantr 479 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
869psrbagf 21868 . . . . . . . . . . . . 13 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
8714, 86syl 17 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
8887adantr 479 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
89 nn0re 12514 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ0𝑞 ∈ ℝ)
90 nn0re 12514 . . . . . . . . . . . . 13 (𝑟 ∈ ℕ0𝑟 ∈ ℝ)
91 nn0re 12514 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
92 letr 11340 . . . . . . . . . . . . 13 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9389, 90, 91, 92syl3an 1157 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9493adantl 480 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9582, 84, 85, 88, 94caoftrn 7724 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘r𝑑𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) → 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9681, 95mpan2d 692 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘r𝑑𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9796ss2rabdv 4069 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
98 undifr 4484 . . . . . . . 8 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
9997, 98sylib 217 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
10099eqcomd 2731 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
1011, 2, 6, 16, 49, 51, 100gsummptfidmsplit 19897 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
102 eqid 2725 . . . . . 6 (0g𝑅) = (0g𝑅)
103 ovex 7452 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
104103rabex 5335 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
105104rabex 5335 . . . . . . 7 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V
106105a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V)
107 ovex 7452 . . . . . . . . 9 ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ V
108 eqid 2725 . . . . . . . . 9 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
109107, 108fnmpti 6699 . . . . . . . 8 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
110109a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
111 fvexd 6911 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
112110, 16, 111fndmfifsupp 9403 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) finSupp (0g𝑅))
1131, 102, 17, 106, 48, 112, 6, 27gsummulg 19909 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
114 difrab 4307 . . . . . . . . . . 11 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}
115114eleq2i 2817 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)})
116 breq1 5152 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
117 breq1 5152 . . . . . . . . . . . . . 14 (𝑘 = 𝑢 → (𝑘r𝑑𝑢r𝑑))
118117notbid 317 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (¬ 𝑘r𝑑 ↔ ¬ 𝑢r𝑑))
119116, 118anbi12d 630 . . . . . . . . . . . 12 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
120119elrab 3679 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
1219psrbagf 21868 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢:𝐼⟶ℕ0)
122121ffnd 6724 . . . . . . . . . . . . . . . 16 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢 Fn 𝐼)
123122adantl 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 Fn 𝐼)
12471adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
1258ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼𝑉)
126 eqidd 2726 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
12763adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
12864a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐼 → if(𝑦 = 𝑋, 1, 0) ∈ ℕ0)
12966, 128fmpti 7121 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0
130129a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
131130ffnd 6724 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
132131ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
133 eqidd 2726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
13476adantl 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
135127, 132, 125, 125, 70, 133, 134ofval 7696 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
136123, 124, 125, 125, 70, 126, 135ofrfval 7695 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
137123, 127, 125, 125, 70, 126, 133ofrfval 7695 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
138137notbid 317 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
139 rexnal 3089 . . . . . . . . . . . . . . 15 (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
140138, 139bitr4di 288 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
141136, 140anbi12d 630 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑) ↔ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
14225ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ ℕ0)
143121adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢:𝐼⟶ℕ0)
14423adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
145143, 144ffvelcdmd 7094 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
146145adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
147146adantr 479 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ0)
148 nn0nlt0 12531 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑋) ∈ ℕ0 → ¬ (𝑑𝑋) < 0)
149142, 148syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑑𝑋) < 0)
15022adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
151150ffvelcdmda 7093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
152151nn0cnd 12567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
153152addridd 11446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑𝑖) + 0) = (𝑑𝑖))
154153breq2d 5161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) ↔ (𝑢𝑖) ≤ (𝑑𝑖)))
155154biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖)))
156 ifnefalse 4542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖𝑋 → if(𝑖 = 𝑋, 1, 0) = 0)
157156oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
158157breq2d 5161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + 0)))
159158imbi1d 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖𝑋 → (((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)) ↔ ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖))))
160155, 159syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖))))
161160imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)))
162161impancom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑖𝑋 → (𝑢𝑖) ≤ (𝑑𝑖)))
163162necon1bd 2947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → 𝑖 = 𝑋))
164163ancrd 550 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
165164ex 411 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
166165ralimdva 3156 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → ∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
167166anim1d 609 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
168167imp 405 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
169 rexim 3076 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
170169imp 405 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
171 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑢𝑖) = (𝑢𝑋))
172 fveq2 6896 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑑𝑖) = (𝑑𝑋))
173171, 172breq12d 5162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ (𝑑𝑖) ↔ (𝑢𝑋) ≤ (𝑑𝑋)))
174173notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑋 → (¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
175174ceqsrexbv 3639 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) ↔ (𝑋𝐼 ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
176175simprbi 495 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
177170, 176syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
17825adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
179178nn0red 12566 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℝ)
180146nn0red 12566 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℝ)
181179, 180ltnled 11393 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) < (𝑢𝑋) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
182181biimpar 476 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)) → (𝑑𝑋) < (𝑢𝑋))
183177, 182sylan2 591 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
184168, 183syldan 589 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
185 breq2 5153 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑋) = 0 → ((𝑑𝑋) < (𝑢𝑋) ↔ (𝑑𝑋) < 0))
186184, 185syl5ibcom 244 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑢𝑋) = 0 → (𝑑𝑋) < 0))
187149, 186mtod 197 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑢𝑋) = 0)
188187neqned 2936 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≠ 0)
189 elnnne0 12519 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋) ∈ ℕ ↔ ((𝑢𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ≠ 0))
190147, 188, 189sylanbrc 581 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ)
191 elfzo0 13708 . . . . . . . . . . . . . . . 16 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) ↔ ((𝑑𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ (𝑑𝑋) < (𝑢𝑋)))
192142, 190, 184, 191syl3anbrc 1340 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ (0..^(𝑢𝑋)))
193 fzostep1 13784 . . . . . . . . . . . . . . 15 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
194192, 193syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
195147nn0red 12566 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℝ)
19627ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℕ0)
197196nn0red 12566 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℝ)
19823ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
199 iftrue 4536 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑋 → if(𝑖 = 𝑋, 1, 0) = 1)
200172, 199oveq12d 7437 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑋) + 1))
201171, 200breq12d 5162 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
202201rspcv 3602 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝐼 → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
203198, 202syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
204203imp 405 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
205204adantrr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
206195, 197, 205lensymd 11397 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) < (𝑢𝑋))
207206intn3an3d 1477 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
208 elfzo0 13708 . . . . . . . . . . . . . . 15 (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ↔ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
209207, 208sylnibr 328 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)))
210194, 209orcnd 876 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
211141, 210sylbida 590 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)) → ((𝑑𝑋) + 1) = (𝑢𝑋))
212211anasss 465 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
213120, 212sylan2b 592 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}) → ((𝑑𝑋) + 1) = (𝑢𝑋))
214115, 213sylan2b 592 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑑𝑋) + 1) = (𝑢𝑋))
215214oveq1d 7434 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
216215mpteq2dva 5249 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
217216oveq2d 7435 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
2189psrbaglefi 21882 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
219218adantl 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
22019ad2antrr 724 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Mnd)
22127adantr 479 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑𝑋) + 1) ∈ ℕ0)
2224ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
223 elrabi 3673 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
22434adantr 479 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
225224ffvelcdmda 7093 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑢) ∈ (Base‘𝑅))
226223, 225sylan2 591 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐹𝑢) ∈ (Base‘𝑅))
22740ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
22822adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑:𝐼⟶ℕ0)
229228ffvelcdmda 7093 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
230229nn0cnd 12567 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
231223, 121syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢:𝐼⟶ℕ0)
232231adantl 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢:𝐼⟶ℕ0)
233232ffvelcdmda 7093 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
234233nn0cnd 12567 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
23554nn0cni 12517 . . . . . . . . . . . . . . . . 17 if(𝑖 = 𝑋, 1, 0) ∈ ℂ
236235a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
237230, 234, 236subadd23d 11625 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
238230, 236, 234addsubassd 11623 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
239237, 238eqtr4d 2768 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
240239mpteq2dva 5249 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
241 eqid 2725 . . . . . . . . . . . . . . . . . . 19 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
2429, 241psrbagconcl 21884 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
243 elrabi 3673 . . . . . . . . . . . . . . . . . 18 ((𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
244242, 243syl 17 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
245244adantll 712 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2469psrbagf 21868 . . . . . . . . . . . . . . . 16 ((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f𝑢):𝐼⟶ℕ0)
247245, 246syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢):𝐼⟶ℕ0)
248247ffnd 6724 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) Fn 𝐼)
24967a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
2508ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼𝑉)
251228ffnd 6724 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 Fn 𝐼)
252232ffnd 6724 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 Fn 𝐼)
253 eqidd 2726 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
254 eqidd 2726 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
255251, 252, 250, 250, 70, 253, 254ofval 7696 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f𝑢)‘𝑖) = ((𝑑𝑖) − (𝑢𝑖)))
25676adantl 480 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
257248, 249, 250, 250, 70, 255, 256offval 7694 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))))
258 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
25911ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
260258, 259, 13syl2anc 582 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
261260, 86syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
262261ffnd 6724 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
263251, 249, 250, 250, 70, 253, 256ofval 7696 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
264262, 252, 250, 250, 70, 263, 254offval 7694 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
265240, 257, 2643eqtr4d 2775 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
2669psrbagaddcl 21878 . . . . . . . . . . . . 13 (((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
267245, 259, 266syl2anc 582 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
268265, 267eqeltrrd 2826 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
269227, 268ffvelcdmd 7094 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
2701, 29, 222, 226, 269ringcld 20211 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
2711, 17, 220, 221, 270mulgnn0cld 19058 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
272 disjdifr 4474 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅
273272a1i 11 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅)
274 simpl 481 . . . . . . . . . . . . 13 ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑)
275274a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑))
276275ss2rabi 4070 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
277276a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
278 undifr 4484 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
279277, 278sylib 217 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
280279eqcomd 2731 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
2811, 2, 6, 219, 271, 273, 280gsummptfidmsplit 19897 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
282 eldifi 4123 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
28323ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
284 eqidd 2726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
285 eqidd 2726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
286251, 252, 250, 250, 70, 284, 285ofval 7696 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
287283, 286mpdan 685 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
288282, 287sylan2 591 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
289288oveq2d 7435 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))))
290232, 283ffvelcdmd 7094 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢𝑋) ∈ ℕ0)
291282, 290sylan2 591 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℕ0)
292291nn0cnd 12567 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℂ)
29325nn0cnd 12567 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℂ)
294293adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑑𝑋) ∈ ℂ)
295292, 294pncan3d 11606 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))) = (𝑑𝑋))
296289, 295eqtrd 2765 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = (𝑑𝑋))
297296oveq1d 7434 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑑𝑋) + 1))
298247, 283ffvelcdmd 7094 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
299282, 298sylan2 591 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
300299nn0cnd 12567 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℂ)
301 1cnd 11241 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 1 ∈ ℂ)
302292, 300, 301addassd 11268 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
303297, 302eqtr3d 2767 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑𝑋) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
304303oveq1d 7434 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
30519ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 𝑅 ∈ Mnd)
306 peano2nn0 12545 . . . . . . . . . . . . . . 15 (((𝑑f𝑢)‘𝑋) ∈ ℕ0 → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
307298, 306syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
308282, 307sylan2 591 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
309282, 270sylan2 591 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
3101, 17, 2mulgnn0dir 19067 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ ((𝑢𝑋) ∈ ℕ0 ∧ (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0 ∧ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
311305, 291, 308, 309, 310syl13anc 1369 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
312304, 311eqtrd 2765 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
313312mpteq2dva 5249 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
314313oveq2d 7435 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
315 difssd 4129 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
316219, 315ssfid 9292 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ Fin)
3171, 17, 220, 290, 270mulgnn0cld 19058 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
318282, 317sylan2 591 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
3191, 17, 220, 307, 270mulgnn0cld 19058 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
320282, 319sylan2 591 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
321 eqid 2725 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
322 eqid 2725 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
3231, 2, 6, 316, 318, 320, 321, 322gsummptfidmadd 19892 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
324314, 323eqtrd 2765 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
32523ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑋𝐼)
32663adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑑 Fn 𝐼)
327 elrabi 3673 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
328327, 122syl 17 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 Fn 𝐼)
329328adantl 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 Fn 𝐼)
3308ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝐼𝑉)
331 eqidd 2726 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
332 eqidd 2726 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
333326, 329, 330, 330, 70, 331, 332ofval 7696 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
334325, 333mpdan 685 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
335 fveq1 6895 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → (𝑘𝑋) = (𝑢𝑋))
336335eqeq1d 2727 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → ((𝑘𝑋) = 0 ↔ (𝑢𝑋) = 0))
337117, 336anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
338337elrab 3679 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
339338simprbi 495 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
340339simprd 494 . . . . . . . . . . . . . . 15 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢𝑋) = 0)
341340adantl 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑢𝑋) = 0)
342341oveq2d 7435 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − (𝑢𝑋)) = ((𝑑𝑋) − 0))
34325adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℕ0)
344343nn0cnd 12567 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℂ)
345344subid1d 11592 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − 0) = (𝑑𝑋))
346334, 342, 3453eqtrrd 2770 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) = ((𝑑f𝑢)‘𝑋))
347346oveq1d 7434 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) + 1) = (((𝑑f𝑢)‘𝑋) + 1))
348347oveq1d 7434 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
349348mpteq2dva 5249 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
350349oveq2d 7435 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
351324, 350oveq12d 7437 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
35218adantr 479 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp)
353104rabex 5335 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V
354353difexi 5331 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V
355354a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V)
356318fmpttd 7124 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
357 ovex 7452 . . . . . . . . . . . 12 ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
358357, 321fnmpti 6699 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
359358a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
360359, 316, 111fndmfifsupp 9403 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3611, 102, 6, 355, 356, 360gsumcl 19882 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
362320fmpttd 7124 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
363 ovex 7452 . . . . . . . . . . . 12 ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
364363, 322fnmpti 6699 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
365364a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
366365, 316, 111fndmfifsupp 9403 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3671, 102, 6, 355, 362, 366gsumcl 19882 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
368104rabex 5335 . . . . . . . . . 10 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V
369368a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V)
370276sseli 3972 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
371370, 319sylan2 591 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
372371fmpttd 7124 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}⟶(Base‘𝑅))
373 eqid 2725 . . . . . . . . . . . 12 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
374363, 373fnmpti 6699 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}
375374a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
376219, 277ssfid 9292 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ Fin)
377375, 376, 111fndmfifsupp 9403 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3781, 102, 6, 369, 372, 377gsumcl 19882 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
3791, 2, 352, 361, 367, 378grpassd 18910 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
380281, 351, 3793eqtrd 2769 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
381217, 380oveq12d 7437 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
382101, 113, 3813eqtr3d 2773 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
383 psdmul.m . . . . . 6 · = (.r𝑆)
38433adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
38539adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺𝐵)
38631, 32, 29, 383, 9, 384, 385, 14psrmulval 21906 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
387386oveq2d 7435 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
388105difexi 5331 . . . . . . 7 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V
389388a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V)
390 eldifi 4123 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
39136, 121syl 17 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢:𝐼⟶ℕ0)
392391adantl 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢:𝐼⟶ℕ0)
39323ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑋𝐼)
394392, 393ffvelcdmd 7094 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝑢𝑋) ∈ ℕ0)
3951, 17, 20, 394, 48mulgnn0cld 19058 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
396390, 395sylan2 591 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
397396fmpttd 7124 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})⟶(Base‘𝑅))
398 eqid 2725 . . . . . . . . 9 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
399357, 398fnmpti 6699 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
400399a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
401 difssd 4129 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
40216, 401ssfid 9292 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ Fin)
403400, 402, 111fndmfifsupp 9403 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
4041, 102, 6, 389, 397, 403gsumcl 19882 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
4051, 2, 352, 367, 378grpcld 18912 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) ∈ (Base‘𝑅))
4061, 2, 352, 404, 361, 405grpassd 18910 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
407382, 387, 4063eqtr4d 2775 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
408407mpteq2dva 5249 . 2 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
40931, 32, 383, 4, 33, 39psrmulcl 21908 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
41031, 32, 9, 8, 3, 23, 409psdval 22106 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
411 psdmul.p . . . 4 + = (+g𝑆)
41218grpmgmd 18926 . . . . . 6 (𝜑𝑅 ∈ Mgm)
41331, 32, 8, 412, 23, 33psdcl 22108 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
41431, 32, 383, 4, 413, 39psrmulcl 21908 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∈ 𝐵)
41531, 32, 8, 412, 23, 39psdcl 22108 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
41631, 32, 383, 4, 33, 415psrmulcl 21908 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) ∈ 𝐵)
41731, 32, 2, 411, 414, 416psradd 21899 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
41831, 1, 9, 32, 414psrelbas 21896 . . . . 5 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
419418ffnd 6724 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
42031, 1, 9, 32, 416psrelbas 21896 . . . . 5 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
421420ffnd 6724 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
422104a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
423 inidm 4217 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
424413adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
42531, 32, 29, 383, 9, 424, 385, 7psrmulval 21906 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))))
426353a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V)
4274ad2antrr 724 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
428 elrabi 3673 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
42931, 1, 9, 32, 413psrelbas 21896 . . . . . . . . . . 11 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
430429adantr 479 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
431430ffvelcdmda 7093 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
432428, 431sylan2 591 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
43340ad2antrr 724 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4349, 241psrbagconcl 21884 . . . . . . . . . . 11 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
435434adantll 712 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
436 elrabi 3673 . . . . . . . . . 10 ((𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
437435, 436syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
438433, 437ffvelcdmd 7094 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘(𝑑f𝑏)) ∈ (Base‘𝑅))
4391, 29, 427, 432, 438ringcld 20211 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ (Base‘𝑅))
440439fmpttd 7124 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}⟶(Base‘𝑅))
441 ovex 7452 . . . . . . . . 9 (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ V
442 eqid 2725 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))
443441, 442fnmpti 6699 . . . . . . . 8 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
444443a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
445444, 219, 111fndmfifsupp 9403 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) finSupp (0g𝑅))
446 eqid 2725 . . . . . . 7 (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
447 df-of 7685 . . . . . . . . . 10 f + = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
448 vex 3465 . . . . . . . . . . 11 𝑢 ∈ V
449448a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 ∈ V)
450 ssv 4001 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V
451450a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V)
452 ssv 4001 . . . . . . . . . . 11 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V
453452a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V)
454447, 449, 451, 453elimampo 7558 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
455454biimpa 475 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
456 elrabi 3673 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4579psrbagf 21868 . . . . . . . . . . . . . . . 16 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑚:𝐼⟶ℕ0)
458457ffund 6727 . . . . . . . . . . . . . . 15 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → Fun 𝑚)
459456, 458syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → Fun 𝑚)
460459funfnd 6585 . . . . . . . . . . . . 13 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 Fn dom 𝑚)
461460ad2antrl 726 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 Fn dom 𝑚)
462 velsn 4646 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
463 funmpt 6592 . . . . . . . . . . . . . . . 16 Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
464 funeq 6574 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (Fun 𝑛 ↔ Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
465463, 464mpbiri 257 . . . . . . . . . . . . . . 15 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → Fun 𝑛)
466465funfnd 6585 . . . . . . . . . . . . . 14 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → 𝑛 Fn dom 𝑛)
467462, 466sylbi 216 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 Fn dom 𝑛)
468467ad2antll 727 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑛 Fn dom 𝑛)
469 vex 3465 . . . . . . . . . . . . . 14 𝑚 ∈ V
470469dmex 7917 . . . . . . . . . . . . 13 dom 𝑚 ∈ V
471470a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑚 ∈ V)
472 vex 3465 . . . . . . . . . . . . . 14 𝑛 ∈ V
473472dmex 7917 . . . . . . . . . . . . 13 dom 𝑛 ∈ V
474473a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑛 ∈ V)
475 eqid 2725 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) = (dom 𝑚 ∩ dom 𝑛)
476 eqidd 2726 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
477 eqidd 2726 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
478461, 468, 471, 474, 475, 476, 477offval 7694 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
479478eqeq2d 2736 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
480 elsni 4647 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
481480oveq2d 7435 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
482481eqeq2d 2736 . . . . . . . . . . . 12 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
483482ad2antll 727 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
4848ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼𝑉)
485456, 457syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚:𝐼⟶ℕ0)
486485adantl 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
487129a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
488 nn0cn 12515 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0𝑞 ∈ ℂ)
489 nn0cn 12515 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℕ0𝑟 ∈ ℂ)
490 nn0cn 12515 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ0𝑠 ∈ ℂ)
491 addsubass 11502 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
492488, 489, 490, 491syl3an 1157 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
493492adantl 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
494484, 486, 487, 487, 493caofass 7723 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
495 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → 𝑖𝐼)
49654a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℕ0)
49766, 74, 495, 496fvmptd3 7027 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
498131, 131, 8, 8, 70, 497, 497offval 7694 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
499498oveq2d 7435 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
500499ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
501235subidi 11563 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)) = 0
502501mpteq2i 5254 . . . . . . . . . . . . . . . . . 18 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ 0)
503 fconstmpt 5740 . . . . . . . . . . . . . . . . . 18 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
504502, 503eqtr4i 2756 . . . . . . . . . . . . . . . . 17 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝐼 × {0})
505504oveq2i 7430 . . . . . . . . . . . . . . . 16 (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑚f + (𝐼 × {0}))
506 0zd 12603 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 0 ∈ ℤ)
507488addridd 11446 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0 → (𝑞 + 0) = 𝑞)
508507adantl 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑞 ∈ ℕ0) → (𝑞 + 0) = 𝑞)
509484, 486, 506, 508caofid0r 7718 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
510505, 509eqtrid 2777 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
511494, 500, 5103eqtrd 2769 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
512 simpr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
513511, 512eqeltrd 2825 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
514 oveq1 7426 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
515514eleq1d 2810 . . . . . . . . . . . . 13 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
516513, 515syl5ibrcom 246 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
517516adantrr 715 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
518483, 517sylbid 239 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
519479, 518sylbird 259 . . . . . . . . 9 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
520519rexlimdvva 3201 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
521455, 520mpd 15 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
522 simpr 483 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
5238mptexd 7236 . . . . . . . . . . 11 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V)
524 elsng 4644 . . . . . . . . . . 11 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
525523, 524syl 17 . . . . . . . . . 10 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
52666, 525mpbiri 257 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
527526ad2antrr 724 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
528447mpofun 7544 . . . . . . . . 9 Fun ∘f +
529528a1i 11 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → Fun ∘f + )
530 xpss 5694 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ (V × V)
531470inex1 5318 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) ∈ V
532531mptex 7235 . . . . . . . . . . 11 (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
533532rgen2w 3055 . . . . . . . . . 10 𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
534447dmmpoga 8078 . . . . . . . . . 10 (∀𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V → dom ∘f + = (V × V))
535533, 534mp1i 13 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → dom ∘f + = (V × V))
536530, 535sseqtrrid 4030 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ dom ∘f + )
537522, 527, 529, 536elovimad 7468 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})))
5388ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝐼𝑉)
539 elrabi 3673 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5409psrbagf 21868 . . . . . . . . . . . . 13 (𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑣:𝐼⟶ℕ0)
541539, 540syl 17 . . . . . . . . . . . 12 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣:𝐼⟶ℕ0)
542541ad2antll 727 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣:𝐼⟶ℕ0)
543129a1i 11 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
544492adantl 480 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
545538, 542, 543, 543, 544caofass 7723 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
546131ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
54776adantl 480 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
548546, 546, 538, 538, 70, 547, 547offval 7694 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
549548oveq2d 7435 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
550504oveq2i 7430 . . . . . . . . . . 11 (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑣f + (𝐼 × {0}))
551 0zd 12603 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 0 ∈ ℤ)
552 nn0cn 12515 . . . . . . . . . . . . . 14 (𝑝 ∈ ℕ0𝑝 ∈ ℂ)
553552addridd 11446 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ0 → (𝑝 + 0) = 𝑝)
554553adantl 480 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
555538, 542, 551, 554caofid0r 7718 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝐼 × {0})) = 𝑣)
556550, 555eqtrid 2777 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑣)
557545, 549, 5563eqtrrd 2770 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
558 oveq1 7426 . . . . . . . . . 10 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
559558eqeq2d 2736 . . . . . . . . 9 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
560557, 559syl5ibrcom 246 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
56111ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5629psrbagaddcl 21878 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
563456, 561, 562syl2an2 684 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
5649psrbagf 21868 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
565563, 564syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
566565adantrr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
567 feq1 6704 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢:𝐼⟶ℕ0 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0))
568566, 567syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢:𝐼⟶ℕ0))
569483, 568sylbid 239 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢:𝐼⟶ℕ0))
570479, 569sylbird 259 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
571570rexlimdvva 3201 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
572455, 571mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℕ0)
573572adantrr 715 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢:𝐼⟶ℕ0)
574573ffvelcdmda 7093 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
575574nn0cnd 12567 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
576235a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
577575, 576npcand 11607 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
578577mpteq2dva 5249 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
579573ffnd 6724 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 Fn 𝐼)
580579, 546, 538, 538, 70offn 7698 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
581 eqidd 2726 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
582579, 546, 538, 538, 70, 581, 547ofval 7696 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
583580, 546, 538, 538, 70, 582, 547offval 7694 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
584573feqmptd 6966 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
585578, 583, 5843eqtr4rd 2776 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
586 oveq1 7426 . . . . . . . . . 10 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
587586eqeq2d 2736 . . . . . . . . 9 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
588585, 587syl5ibrcom 246 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
589560, 588impbid 211 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
590446, 521, 537, 589f1o2d 7675 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))–1-1-onto→{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
5911, 102, 6, 426, 440, 445, 590gsumf1o 19883 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))) = (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
592553adantl 480 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
593484, 486, 506, 592caofid0r 7718 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
594505, 593eqtrid 2777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
595494, 500, 5943eqtrd 2769 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
596595, 512eqeltrd 2825 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
597596, 515syl5ibrcom 246 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
598597adantrr 715 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
599483, 598sylbid 239 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
600479, 599sylbird 259 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
601600rexlimdvva 3201 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
602455, 601mpd 15 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
603 eqidd 2726 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
604 eqidd 2726 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))))
605 fveq2 6896 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
606 oveq2 7427 . . . . . . . . . . 11 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑑f𝑏) = (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
607606fveq2d 6900 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐺‘(𝑑f𝑏)) = (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
608605, 607oveq12d 7437 . . . . . . . . 9 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
609602, 603, 604, 608fmptco 7138 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
6108ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐼𝑉)
6113ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ CRing)
61223ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑋𝐼)
61333ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹𝐵)
614 elrabi 3673 . . . . . . . . . . . . . 14 ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
615602, 614syl 17 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
61631, 32, 9, 610, 611, 612, 613, 615psdcoef 22107 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
617572ffnd 6724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 Fn 𝐼)
618129a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
619618ffnd 6724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
620 eqidd 2726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
621 iftrue 4536 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
622 1ex 11242 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
623621, 66, 622fvmpt 7004 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
624623adantl 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
625617, 619, 610, 610, 70, 620, 624ofval 7696 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
626612, 625mpdan 685 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
627626oveq1d 7434 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (((𝑢𝑋) − 1) + 1))
628 nn0sscn 12510 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℂ
629628a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ℕ0 ⊆ ℂ)
630572, 629fssd 6740 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℂ)
631630, 612ffvelcdmd 7094 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℂ)
632 1cnd 11241 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 1 ∈ ℂ)
633631, 632npcand 11607 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋) − 1) + 1) = (𝑢𝑋))
634627, 633eqtrd 2765 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (𝑢𝑋))
635617, 619, 610, 610, 70offn 7698 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
636 eqidd 2726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
63776adantl 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
638617, 619, 610, 610, 70, 636, 637ofval 7696 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
639572ffvelcdmda 7093 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
640639nn0cnd 12567 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
641235a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
642640, 641npcand 11607 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
643610, 635, 619, 617, 638, 637, 642offveq 7710 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑢)
644643fveq2d 6900 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹𝑢))
645634, 644oveq12d 7437 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
646616, 645eqtrd 2765 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
64721ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑:𝐼⟶ℕ0)
648647ffvelcdmda 7093 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
649648nn0cnd 12567 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
650649, 640, 641subsub3d 11633 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0))) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
651650mpteq2dva 5249 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
65263adantr 479 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑 Fn 𝐼)
653 eqidd 2726 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
654652, 635, 610, 610, 70, 653, 638offval 7694 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))))
655652, 619, 610, 610, 70offn 7698 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
656652, 619, 610, 610, 70, 653, 637ofval 7696 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
657655, 617, 610, 610, 70, 656, 636offval 7694 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
658651, 654, 6573eqtr4d 2775 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
659658fveq2d 6900 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
660646, 659oveq12d 7437 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
6614ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Ring)
662572, 612ffvelcdmd 7094 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℕ0)
663662nn0zd 12617 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℤ)
66434ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
665 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
66611ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
667 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
668 eqid 2725 . . . . . . . . . . . . . . . . . . . 20 {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
6699, 241, 668psrbagleadd1 21886 . . . . . . . . . . . . . . . . . . 19 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
670665, 666, 667, 669syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
671 eleq1 2813 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
672670, 671syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
673483, 672sylbid 239 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
674479, 673sylbird 259 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
675674rexlimdvva 3201 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
676455, 675mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
677 elrabi 3673 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
678676, 677syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
679664, 678ffvelcdmd 7094 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹𝑢) ∈ (Base‘𝑅))
68040ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
68114adantr 479 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6829, 668psrbagconcl 21884 . . . . . . . . . . . . . 14 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
683681, 676, 682syl2anc 582 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
684 elrabi 3673 . . . . . . . . . . . . 13 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
685683, 684syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
686680, 685ffvelcdmd 7094 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
6871, 17, 29mulgass2 20257 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑢𝑋) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
688661, 663, 679, 686, 687syl13anc 1369 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
689660, 688eqtrd 2765 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
690689mpteq2dva 5249 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
691609, 690eqtrd 2765 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
692691oveq2d 7435 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
693 snex 5433 . . . . . . . . . 10 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ V
694353, 693xpex 7756 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∈ V
695694funimaex 6642 . . . . . . . 8 (Fun ∘f + → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
696528, 695mp1i 13 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
69719ad2antrr 724 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Mnd)
6981, 29, 661, 679, 686ringcld 20211 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
6991, 17, 697, 662, 698mulgnn0cld 19058 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
700 eqid 2725 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
701357, 700fnmpti 6699 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
702701a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
703702, 16, 111fndmfifsupp 9403 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
704460ad2antlr 725 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑚 Fn dom 𝑚)
705467adantl 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑛 Fn dom 𝑛)
706470a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑚 ∈ V)
707473a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑛 ∈ V)
708 eqidd 2726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
709 eqidd 2726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
710704, 705, 706, 707, 475, 708, 709offval 7694 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
711710eqeq2d 2736 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
712711rexbidva 3166 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ ∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
71311ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
714 oveq2 7427 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
715714eqeq2d 2736 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
716715rexsng 4680 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
717713, 716syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
718712, 717bitr3d 280 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
719718rexbidva 3166 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
720 breq1 5152 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
721 breq1 5152 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
722 fveq1 6895 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘𝑋) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋))
723722eqeq1d 2727 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘𝑋) = 0 ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
724721, 723anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
725724notbid 317 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
726720, 725anbi12d 630 . . . . . . . . . . . . . . 15 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))))
727456, 713, 562syl2an2 684 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
728 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
729 simpr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
7309, 241, 42psrbagleadd1 21886 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
731728, 713, 729, 730syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
732720elrab 3679 . . . . . . . . . . . . . . . . . 18 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
733732simprbi 495 . . . . . . . . . . . . . . . . 17 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
734731, 733syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
73523ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
736485adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
737736ffnd 6724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 Fn 𝐼)
738131ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7398ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼𝑉)
740 eqidd 2726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑚𝑋) = (𝑚𝑋))
741623adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
742737, 738, 739, 739, 70, 740, 741ofval 7696 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
743735, 742mpdan 685 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
744736, 735ffvelcdmd 7094 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚𝑋) ∈ ℕ0)
745 nn0p1nn 12544 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑋) ∈ ℕ0 → ((𝑚𝑋) + 1) ∈ ℕ)
746744, 745syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚𝑋) + 1) ∈ ℕ)
747743, 746eqeltrd 2825 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ∈ ℕ)
748747nnne0d 12295 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ≠ 0)
749748neneqd 2934 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)
750749intnand 487 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
751734, 750jca 510 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
752726, 727, 751elrabd 3681 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
753 eleq1 2813 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
754752, 753syl5ibrcom 246 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
755 breq1 5152 . . . . . . . . . . . . . 14 (𝑘 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
756 elrabi 3673 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
757756adantl 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
758129a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
759756, 121syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢:𝐼⟶ℕ0)
760759adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢:𝐼⟶ℕ0)
76123ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑋𝐼)
762760, 761ffvelcdmd 7094 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ0)
763337notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑘 = 𝑢 → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
764116, 763anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
765764elrab 3679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
766765simprbi 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
767766simpld 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
768767adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
769768adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
770756, 122syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 Fn 𝐼)
771770adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 Fn 𝐼)
772771adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢 Fn 𝐼)
77314adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
77486ffnd 6724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
775773, 774syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
776775adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
7778ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝐼𝑉)
778 eqidd 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
779 eqidd 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
780772, 776, 777, 777, 70, 778, 779ofrfval 7695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)))
781769, 780mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
782781r19.21bi 3238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
783782adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
78463ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝑑 Fn 𝐼)
78567a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7868ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝐼𝑉)
787 eqidd 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
78876adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
789784, 785, 786, 786, 70, 787, 788ofval 7696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
790789an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
791156adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → if(𝑖 = 𝑋, 1, 0) = 0)
792791oveq2d 7435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
79322ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑:𝐼⟶ℕ0)
794793ffvelcdmda 7093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
795794adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℕ0)
796795nn0cnd 12567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℂ)
797796addridd 11446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + 0) = (𝑑𝑖))
798790, 792, 7973eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = (𝑑𝑖))
799783, 798breqtrd 5175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ (𝑑𝑖))
800 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) = 0)
80122adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑:𝐼⟶ℕ0)
802801, 761ffvelcdmd 7094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑𝑋) ∈ ℕ0)
803802nn0ge0d 12568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 0 ≤ (𝑑𝑋))
804803adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 0 ≤ (𝑑𝑋))
805800, 804eqbrtrd 5171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) ≤ (𝑑𝑋))
806805adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑋) ≤ (𝑑𝑋))
807173, 799, 806pm2.61ne 3016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ (𝑑𝑖))
808807ralrimiva 3135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
80963adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑 Fn 𝐼)
810809adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑 Fn 𝐼)
811 eqidd 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
812772, 810, 777, 777, 70, 778, 811ofrfval 7695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
813808, 812mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r𝑑)
814813ex 411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → 𝑢r𝑑))
815766simprd 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
816815adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
817 imnan 398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢r𝑑 → ¬ (𝑢𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
818816, 817sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r𝑑 → ¬ (𝑢𝑋) = 0))
819818con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → ¬ 𝑢r𝑑))
820814, 819pm2.65d 195 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢𝑋) = 0)
821820neqned 2936 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ≠ 0)
822762, 821, 189sylanbrc 581 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ)
823822nnge1d 12293 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 1 ≤ (𝑢𝑋))
824823adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 1 ≤ (𝑢𝑋))
825171breq2d 5161 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → (1 ≤ (𝑢𝑖) ↔ 1 ≤ (𝑢𝑋)))
826824, 825syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑖 = 𝑋 → 1 ≤ (𝑢𝑖)))
827826imp 405 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ 𝑖 = 𝑋) → 1 ≤ (𝑢𝑖))
828760ffvelcdmda 7093 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
829828nn0ge0d 12568 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 0 ≤ (𝑢𝑖))
830829adantr 479 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ ¬ 𝑖 = 𝑋) → 0 ≤ (𝑢𝑖))
831827, 830ifpimpda 1078 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
832 brif1 7517 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖) ↔ if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
833831, 832sylibr 233 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
834833ralrimiva 3135 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
83567a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
8368ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝐼𝑉)
83776adantl 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
838 eqidd 2726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
839835, 771, 836, 836, 70, 837, 838ofrfval 7695 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢 ↔ ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖)))
840834, 839mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢)
8419psrbagcon 21880 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
842757, 758, 840, 841syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
843842simpld 493 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
844 eqidd 2726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
845809, 835, 836, 836, 70, 844, 837ofval 7696 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
846771, 775, 836, 836, 70, 838, 845ofrfval 7695 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
847768, 846mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
848847r19.21bi 3238 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
849828nn0red 12566 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℝ)
85058a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
851801ffvelcdmda 7093 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
852851nn0red 12566 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
853849, 850, 852lesubaddd 11843 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
854848, 853mpbird 256 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
855854ralrimiva 3135 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
856771, 835, 836, 836, 70offn 7698 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
857771, 835, 836, 836, 70, 838, 837ofval 7696 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
858856, 809, 836, 836, 70, 857, 844ofrfval 7695 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ↔ ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖)))
859855, 858mpbird 256 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑)
860755, 843, 859elrabd 3681 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
861828nn0cnd 12567 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
862235a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
863861, 862npcand 11607 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
864863mpteq2dva 5249 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
865856, 835, 836, 836, 70, 857, 837offval 7694 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
866760feqmptd 6966 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
867864, 865, 8663eqtr4rd 2776 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
868 oveq1 7426 . . . . . . . . . . . . . 14 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
869868eqeq2d 2736 . . . . . . . . . . . . 13 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
870754, 860, 867, 869rspceb2dv 3610 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
871454, 719, 8703bitrd 304 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
872871eqrdv 2723 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
873 difrab 4307 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}
874872, 873eqtr4di 2783 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
875 difssd 4129 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
876874, 875eqsstrd 4015 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
877703, 876, 111fmptssfisupp 9419 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
878 difss 4128 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
879 disjdif 4473 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
880 ssdisj 4461 . . . . . . . . . 10 ((({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅)
881878, 879, 880mp2an 690 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
882881ineqcomi 4201 . . . . . . . 8 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅
883882a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅)
884277, 97psdmullem 22112 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
885874, 884eqtr4d 2768 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})))
8861, 102, 2, 6, 696, 699, 877, 883, 885gsumsplit2 19896 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
887692, 886eqtrd 2765 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
888425, 591, 8873eqtrd 2769 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
889415adantr 479 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
89031, 32, 29, 383, 9, 384, 889, 7psrmulval 21906 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))))
8913ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ CRing)
89239ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺𝐵)
89331, 32, 9, 250, 891, 283, 892, 245psdcoef 22107 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
894265fveq2d 6900 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
895894oveq2d 7435 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
896893, 895eqtrd 2765 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
897896oveq2d 7435 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
898307nn0zd 12617 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ)
8991, 17, 29mulgass3 20304 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
900222, 898, 226, 269, 899syl13anc 1369 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
901897, 900eqtrd 2765 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
902901mpteq2dva 5249 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
903902oveq2d 7435 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
9041, 2, 6, 219, 319, 273, 280gsummptfidmsplit 19897 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
905890, 903, 9043eqtrd 2769 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
906419, 421, 422, 422, 423, 888, 905offval 7694 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
907417, 906eqtrd 2765 . 2 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
908408, 410, 9073eqtr4d 2775 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  if-wif 1060  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  Vcvv 3461  cdif 3941  cun 3942  cin 3943  wss 3944  c0 4322  ifcif 4530  {csn 4630   class class class wbr 5149  cmpt 5232   × cxp 5676  ccnv 5677  dom cdm 5678  cima 5681  ccom 5682  Fun wfun 6543   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  r cofr 7684  m cmap 8845  Fincfn 8964  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cmin 11476  cn 12245  0cn0 12505  cz 12591  ..^cfzo 13662  Basecbs 17183  +gcplusg 17236  .rcmulr 17237  0gc0g 17424   Σg cgsu 17425  Mndcmnd 18697  Grpcgrp 18898  .gcmg 19031  CMndccmn 19747  Ringcrg 20185  CRingccrg 20186   mPwSer cmps 21854   mPSDer cpsd 22078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-tset 17255  df-0g 17426  df-gsum 17427  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-mulg 19032  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-psr 21859  df-psd 22103
This theorem is referenced by:  psd1  22114
  Copyright terms: Public domain W3C validator