MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmul Structured version   Visualization version   GIF version

Theorem psdmul 22109
Description: Product rule for power series. An outline is available at https://github.com/icecream17/Stuff/blob/main/math/psdmul.pdf. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psdmul.s 𝑆 = (𝐼 mPwSer 𝑅)
psdmul.b 𝐵 = (Base‘𝑆)
psdmul.p + = (+g𝑆)
psdmul.m · = (.r𝑆)
psdmul.r (𝜑𝑅 ∈ CRing)
psdmul.x (𝜑𝑋𝐼)
psdmul.f (𝜑𝐹𝐵)
psdmul.g (𝜑𝐺𝐵)
Assertion
Ref Expression
psdmul (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))

Proof of Theorem psdmul
Dummy variables 𝑏 𝑑 𝑖 𝑘 𝑚 𝑛 𝑜 𝑝 𝑞 𝑟 𝑠 𝑢 𝑣 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2736 . . . . . 6 (+g𝑅) = (+g𝑅)
3 psdmul.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43crngringd 20211 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
54ringcmnd 20249 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
7 simpr 484 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
8 psdmul.f . . . . . . . . . . 11 (𝜑𝐹𝐵)
9 psdmul.s . . . . . . . . . . . 12 𝑆 = (𝐼 mPwSer 𝑅)
10 psdmul.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
11 reldmpsr 21879 . . . . . . . . . . . 12 Rel dom mPwSer
129, 10, 11strov2rcl 17241 . . . . . . . . . . 11 (𝐹𝐵𝐼 ∈ V)
138, 12syl 17 . . . . . . . . . 10 (𝜑𝐼 ∈ V)
14 eqid 2736 . . . . . . . . . . 11 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
1514psrbagsn 22026 . . . . . . . . . 10 (𝐼 ∈ V → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1613, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1716adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
1814psrbagaddcl 21889 . . . . . . . 8 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
197, 17, 18syl2anc 584 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2014psrbaglefi 21891 . . . . . . 7 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
2119, 20syl 17 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin)
22 eqid 2736 . . . . . . 7 (.g𝑅) = (.g𝑅)
233crnggrpd 20212 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
2423grpmndd 18934 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
2524ad2antrr 726 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Mnd)
2614psrbagf 21883 . . . . . . . . . . 11 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0)
2726adantl 481 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
28 psdmul.x . . . . . . . . . . 11 (𝜑𝑋𝐼)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
3027, 29ffvelcdmd 7080 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
31 peano2nn0 12546 . . . . . . . . 9 ((𝑑𝑋) ∈ ℕ0 → ((𝑑𝑋) + 1) ∈ ℕ0)
3230, 31syl 17 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) + 1) ∈ ℕ0)
3332adantr 480 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑𝑋) + 1) ∈ ℕ0)
34 eqid 2736 . . . . . . . 8 (.r𝑅) = (.r𝑅)
354ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Ring)
369, 1, 14, 10, 8psrelbas 21899 . . . . . . . . . 10 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
3736ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
38 elrabi 3671 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
3938adantl 481 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4037, 39ffvelcdmd 7080 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐹𝑢) ∈ (Base‘𝑅))
41 psdmul.g . . . . . . . . . . 11 (𝜑𝐺𝐵)
429, 1, 14, 10, 41psrelbas 21899 . . . . . . . . . 10 (𝜑𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4342ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
44 eqid 2736 . . . . . . . . . . . 12 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
4514, 44psrbagconcl 21892 . . . . . . . . . . 11 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
4619, 45sylan 580 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
47 elrabi 3671 . . . . . . . . . 10 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4846, 47syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4943, 48ffvelcdmd 7080 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
501, 34, 35, 40, 49ringcld 20225 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
511, 22, 25, 33, 50mulgnn0cld 19083 . . . . . 6 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
52 disjdifr 4453 . . . . . . 7 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅
5352a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = ∅)
54 1nn0 12522 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
55 0nn0 12521 . . . . . . . . . . . . . . . 16 0 ∈ ℕ0
5654, 55ifcli 4553 . . . . . . . . . . . . . . 15 if(𝑖 = 𝑋, 1, 0) ∈ ℕ0
5756nn0ge0i 12533 . . . . . . . . . . . . . 14 0 ≤ if(𝑖 = 𝑋, 1, 0)
5827ffvelcdmda 7079 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
5958nn0red 12568 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
6056nn0rei 12517 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ ℝ
6160a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
6259, 61addge01d 11830 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (0 ≤ if(𝑖 = 𝑋, 1, 0) ↔ (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
6357, 62mpbii 233 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6463ralrimiva 3133 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
6527ffnd 6712 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
6654, 55ifcli 4553 . . . . . . . . . . . . . . . . 17 if(𝑦 = 𝑋, 1, 0) ∈ ℕ0
6766elexi 3487 . . . . . . . . . . . . . . . 16 if(𝑦 = 𝑋, 1, 0) ∈ V
68 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
6967, 68fnmpti 6686 . . . . . . . . . . . . . . 15 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼
7069a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
7113adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
72 inidm 4207 . . . . . . . . . . . . . 14 (𝐼𝐼) = 𝐼
7365, 70, 71, 71, 72offn 7689 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
74 eqidd 2737 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
75 eqeq1 2740 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑖 → (𝑦 = 𝑋𝑖 = 𝑋))
7675ifbid 4529 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0))
7756elexi 3487 . . . . . . . . . . . . . . . 16 if(𝑖 = 𝑋, 1, 0) ∈ V
7876, 68, 77fvmpt 6991 . . . . . . . . . . . . . . 15 (𝑖𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
7978adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
8065, 70, 71, 71, 72, 74, 79ofval 7687 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
8165, 73, 71, 71, 72, 74, 80ofrfval 7686 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑑𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
8264, 81mpbird 257 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8382adantr 480 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
8413ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
8514psrbagf 21883 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0)
8685adantl 481 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
8727adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
8814psrbagf 21883 . . . . . . . . . . . . 13 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
8919, 88syl 17 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
9089adantr 480 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
91 nn0re 12515 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ0𝑞 ∈ ℝ)
92 nn0re 12515 . . . . . . . . . . . . 13 (𝑟 ∈ ℕ0𝑟 ∈ ℝ)
93 nn0re 12515 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
94 letr 11334 . . . . . . . . . . . . 13 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9591, 92, 93, 94syl3an 1160 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9695adantl 481 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞𝑟𝑟𝑠) → 𝑞𝑠))
9784, 86, 87, 90, 96caoftrn 7717 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑘r𝑑𝑑r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) → 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9883, 97mpan2d 694 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑘r𝑑𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
9998ss2rabdv 4056 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
100 undifr 4463 . . . . . . . 8 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
10199, 100sylib 218 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
102101eqcomd 2742 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
1031, 2, 6, 21, 51, 53, 102gsummptfidmsplit 19916 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
104 eqid 2736 . . . . . 6 (0g𝑅) = (0g𝑅)
105 ovex 7443 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
106105rabex 5314 . . . . . . . 8 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
107106rabex 5314 . . . . . . 7 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V
108107a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V)
109 ovex 7443 . . . . . . . . 9 ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ V
110 eqid 2736 . . . . . . . . 9 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
111109, 110fnmpti 6686 . . . . . . . 8 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
112111a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
113 fvexd 6896 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
114112, 21, 113fndmfifsupp 9395 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) finSupp (0g𝑅))
1151, 104, 22, 108, 50, 114, 6, 32gsummulg 19928 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
116 difrab 4298 . . . . . . . . . . 11 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}
117116eleq2i 2827 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)})
118 breq1 5127 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
119 breq1 5127 . . . . . . . . . . . . . 14 (𝑘 = 𝑢 → (𝑘r𝑑𝑢r𝑑))
120119notbid 318 . . . . . . . . . . . . 13 (𝑘 = 𝑢 → (¬ 𝑘r𝑑 ↔ ¬ 𝑢r𝑑))
121118, 120anbi12d 632 . . . . . . . . . . . 12 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
122121elrab 3676 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)))
12314psrbagf 21883 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢:𝐼⟶ℕ0)
124123ffnd 6712 . . . . . . . . . . . . . . . 16 (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑢 Fn 𝐼)
125124adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 Fn 𝐼)
12673adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
12713ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
128 eqidd 2737 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
12965adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼)
13066a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐼 → if(𝑦 = 𝑋, 1, 0) ∈ ℕ0)
13168, 130fmpti 7107 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0
132131a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
133132ffnd 6712 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
134133ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
135 eqidd 2737 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
13678adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
137129, 134, 127, 127, 72, 135, 136ofval 7687 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
138125, 126, 127, 127, 72, 128, 137ofrfval 7686 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
139125, 129, 127, 127, 72, 128, 135ofrfval 7686 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
140139notbid 318 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
141 rexnal 3090 . . . . . . . . . . . . . . 15 (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
142140, 141bitr4di 289 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (¬ 𝑢r𝑑 ↔ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
143138, 142anbi12d 632 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑) ↔ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
14430ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ ℕ0)
145123adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢:𝐼⟶ℕ0)
14628adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
147145, 146ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
148147adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℕ0)
149148adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ0)
150 nn0nlt0 12532 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝑋) ∈ ℕ0 → ¬ (𝑑𝑋) < 0)
151144, 150syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑑𝑋) < 0)
15227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0)
153152ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
154153nn0cnd 12569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
155154addridd 11440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑑𝑖) + 0) = (𝑑𝑖))
156155breq2d 5136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) ↔ (𝑢𝑖) ≤ (𝑑𝑖)))
157156biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖)))
158 ifnefalse 4517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖𝑋 → if(𝑖 = 𝑋, 1, 0) = 0)
159158oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
160159breq2d 5136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + 0)))
161160imbi1d 341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑖𝑋 → (((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)) ↔ ((𝑢𝑖) ≤ ((𝑑𝑖) + 0) → (𝑢𝑖) ≤ (𝑑𝑖))))
162157, 161syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → (𝑖𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖))))
163162imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑖) ≤ (𝑑𝑖)))
164163impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑖𝑋 → (𝑢𝑖) ≤ (𝑑𝑖)))
165164necon1bd 2951 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → 𝑖 = 𝑋))
166165ancrd 551 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) ∧ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
167166ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑖𝐼) → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
168167ralimdva 3153 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → ∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))))
169168anim1d 611 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
170169imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
171 rexim 3078 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))))
172171imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)))
173 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑢𝑖) = (𝑢𝑋))
174 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 = 𝑋 → (𝑑𝑖) = (𝑑𝑋))
175173, 174breq12d 5137 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ (𝑑𝑖) ↔ (𝑢𝑋) ≤ (𝑑𝑋)))
176175notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝑋 → (¬ (𝑢𝑖) ≤ (𝑑𝑖) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
177176ceqsrexbv 3640 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) ↔ (𝑋𝐼 ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
178177simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑖𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
179172, 178syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖)) → ¬ (𝑢𝑋) ≤ (𝑑𝑋))
18030adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℕ0)
181180nn0red 12568 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℝ)
182148nn0red 12568 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢𝑋) ∈ ℝ)
183181, 182ltnled 11387 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑𝑋) < (𝑢𝑋) ↔ ¬ (𝑢𝑋) ≤ (𝑑𝑋)))
184183biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ¬ (𝑢𝑋) ≤ (𝑑𝑋)) → (𝑑𝑋) < (𝑢𝑋))
185179, 184sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (¬ (𝑢𝑖) ≤ (𝑑𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢𝑖) ≤ (𝑑𝑖))) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
186170, 185syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) < (𝑢𝑋))
187 breq2 5128 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑋) = 0 → ((𝑑𝑋) < (𝑢𝑋) ↔ (𝑑𝑋) < 0))
188186, 187syl5ibcom 245 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑢𝑋) = 0 → (𝑑𝑋) < 0))
189151, 188mtod 198 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (𝑢𝑋) = 0)
190189neqned 2940 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≠ 0)
191 elnnne0 12520 . . . . . . . . . . . . . . . . 17 ((𝑢𝑋) ∈ ℕ ↔ ((𝑢𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ≠ 0))
192149, 190, 191sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℕ)
193 elfzo0 13722 . . . . . . . . . . . . . . . 16 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) ↔ ((𝑑𝑋) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ (𝑑𝑋) < (𝑢𝑋)))
194144, 192, 186, 193syl3anbrc 1344 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑑𝑋) ∈ (0..^(𝑢𝑋)))
195 fzostep1 13804 . . . . . . . . . . . . . . 15 ((𝑑𝑋) ∈ (0..^(𝑢𝑋)) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
196194, 195syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ∨ ((𝑑𝑋) + 1) = (𝑢𝑋)))
197149nn0red 12568 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ∈ ℝ)
19832ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℕ0)
199198nn0red 12568 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) ∈ ℝ)
20028ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑋𝐼)
201 iftrue 4511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑋 → if(𝑖 = 𝑋, 1, 0) = 1)
202174, 201oveq12d 7428 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑋) + 1))
203173, 202breq12d 5137 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑋 → ((𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
204203rspcv 3602 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝐼 → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
205200, 204syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1)))
206205imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
207206adantrr 717 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → (𝑢𝑋) ≤ ((𝑑𝑋) + 1))
208197, 199, 207lensymd 11391 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) < (𝑢𝑋))
209208intn3an3d 1483 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
210 elfzo0 13722 . . . . . . . . . . . . . . 15 (((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)) ↔ (((𝑑𝑋) + 1) ∈ ℕ0 ∧ (𝑢𝑋) ∈ ℕ ∧ ((𝑑𝑋) + 1) < (𝑢𝑋)))
211209, 210sylnibr 329 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ¬ ((𝑑𝑋) + 1) ∈ (0..^(𝑢𝑋)))
212196, 211orcnd 878 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖𝐼 ¬ (𝑢𝑖) ≤ (𝑑𝑖))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
213143, 212sylbida 592 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑)) → ((𝑑𝑋) + 1) = (𝑢𝑋))
214213anasss 466 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢r𝑑))) → ((𝑑𝑋) + 1) = (𝑢𝑋))
215122, 214sylan2b 594 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘r𝑑)}) → ((𝑑𝑋) + 1) = (𝑢𝑋))
216117, 215sylan2b 594 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑑𝑋) + 1) = (𝑢𝑋))
217216oveq1d 7425 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
218217mpteq2dva 5219 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
219218oveq2d 7426 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
22014psrbaglefi 21891 . . . . . . . . 9 (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
221220adantl 481 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ Fin)
22224ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Mnd)
22332adantr 480 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑𝑋) + 1) ∈ ℕ0)
2244ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
225 elrabi 3671 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
22636adantr 480 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
227226ffvelcdmda 7079 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝐹𝑢) ∈ (Base‘𝑅))
228225, 227sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐹𝑢) ∈ (Base‘𝑅))
22942ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23027adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑:𝐼⟶ℕ0)
231230ffvelcdmda 7079 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
232231nn0cnd 12569 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
233225, 123syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑢:𝐼⟶ℕ0)
234233adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢:𝐼⟶ℕ0)
235234ffvelcdmda 7079 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
236235nn0cnd 12569 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
23756nn0cni 12518 . . . . . . . . . . . . . . . . 17 if(𝑖 = 𝑋, 1, 0) ∈ ℂ
238237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
239232, 236, 238subadd23d 11621 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
240232, 238, 236addsubassd 11619 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)) = ((𝑑𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢𝑖))))
241239, 240eqtr4d 2774 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0)) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
242241mpteq2dva 5219 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
243 eqid 2736 . . . . . . . . . . . . . . . . . . 19 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
24414, 243psrbagconcl 21892 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
245 elrabi 3671 . . . . . . . . . . . . . . . . . 18 ((𝑑f𝑢) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
246244, 245syl 17 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
247246adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
24814psrbagf 21883 . . . . . . . . . . . . . . . 16 ((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f𝑢):𝐼⟶ℕ0)
249247, 248syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢):𝐼⟶ℕ0)
250249ffnd 6712 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑢) Fn 𝐼)
25169a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
25213ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
253230ffnd 6712 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 Fn 𝐼)
254234ffnd 6712 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 Fn 𝐼)
255 eqidd 2737 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
256 eqidd 2737 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
257253, 254, 252, 252, 72, 255, 256ofval 7687 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f𝑢)‘𝑖) = ((𝑑𝑖) − (𝑢𝑖)))
25878adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
259250, 251, 252, 252, 72, 257, 258offval 7685 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑑𝑖) − (𝑢𝑖)) + if(𝑖 = 𝑋, 1, 0))))
260 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
26116ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
262260, 261, 18syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
263262, 88syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
264263ffnd 6712 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
265253, 251, 252, 252, 72, 255, 258ofval 7687 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
266264, 254, 252, 252, 72, 265, 256offval 7685 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
267242, 259, 2663eqtr4d 2781 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
26814psrbagaddcl 21889 . . . . . . . . . . . . 13 (((𝑑f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
269247, 261, 268syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
270267, 269eqeltrrd 2836 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
271229, 270ffvelcdmd 7080 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
2721, 34, 224, 228, 271ringcld 20225 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
2731, 22, 222, 223, 272mulgnn0cld 19083 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
274 disjdifr 4453 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅
275274a1i 11 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = ∅)
276 simpl 482 . . . . . . . . . . . . 13 ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑)
277276a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) → 𝑘r𝑑))
278277ss2rabi 4057 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
279278a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
280 undifr 4463 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
281279, 280sylib 218 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
282281eqcomd 2742 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∪ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
2831, 2, 6, 221, 273, 275, 282gsummptfidmsplit 19916 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
284 eldifi 4111 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
28528ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
286 eqidd 2737 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
287 eqidd 2737 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
288253, 254, 252, 252, 72, 286, 287ofval 7687 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
289285, 288mpdan 687 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
290284, 289sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
291290oveq2d 7426 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))))
292234, 285ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢𝑋) ∈ ℕ0)
293284, 292sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℕ0)
294293nn0cnd 12569 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑢𝑋) ∈ ℂ)
29530nn0cnd 12569 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑑𝑋) ∈ ℂ)
296295adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (𝑑𝑋) ∈ ℂ)
297294, 296pncan3d 11602 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑𝑋) − (𝑢𝑋))) = (𝑑𝑋))
298291, 297eqtrd 2771 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) = (𝑑𝑋))
299298oveq1d 7425 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑑𝑋) + 1))
300249, 285ffvelcdmd 7080 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
301284, 300sylan2 593 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℕ0)
302301nn0cnd 12569 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑f𝑢)‘𝑋) ∈ ℂ)
303 1cnd 11235 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 1 ∈ ℂ)
304294, 302, 303addassd 11262 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + ((𝑑f𝑢)‘𝑋)) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
305299, 304eqtr3d 2773 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑑𝑋) + 1) = ((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1)))
306305oveq1d 7425 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
30724ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → 𝑅 ∈ Mnd)
308 peano2nn0 12546 . . . . . . . . . . . . . . 15 (((𝑑f𝑢)‘𝑋) ∈ ℕ0 → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
309300, 308syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
310284, 309sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0)
311284, 272sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
3121, 22, 2mulgnn0dir 19092 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ ((𝑢𝑋) ∈ ℕ0 ∧ (((𝑑f𝑢)‘𝑋) + 1) ∈ ℕ0 ∧ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
313307, 293, 310, 311, 312syl13anc 1374 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑢𝑋) + (((𝑑f𝑢)‘𝑋) + 1))(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
314306, 313eqtrd 2771 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
315314mpteq2dva 5219 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
316315oveq2d 7426 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
317 difssd 4117 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
318221, 317ssfid 9278 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ Fin)
3191, 22, 222, 292, 272mulgnn0cld 19083 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
320284, 319sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
3211, 22, 222, 309, 272mulgnn0cld 19083 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
322284, 321sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
323 eqid 2736 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
324 eqid 2736 . . . . . . . . . 10 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
3251, 2, 6, 318, 320, 322, 323, 324gsummptfidmadd 19911 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))(+g𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
326316, 325eqtrd 2771 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
32728ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑋𝐼)
32865adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑑 Fn 𝐼)
329 elrabi 3671 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
330329, 124syl 17 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 Fn 𝐼)
331330adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝑢 Fn 𝐼)
33213ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → 𝐼 ∈ V)
333 eqidd 2737 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑑𝑋) = (𝑑𝑋))
334 eqidd 2737 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
335328, 331, 332, 332, 72, 333, 334ofval 7687 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∧ 𝑋𝐼) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
336327, 335mpdan 687 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑f𝑢)‘𝑋) = ((𝑑𝑋) − (𝑢𝑋)))
337 fveq1 6880 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → (𝑘𝑋) = (𝑢𝑋))
338337eqeq1d 2738 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → ((𝑘𝑋) = 0 ↔ (𝑢𝑋) = 0))
339119, 338anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
340339elrab 3676 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
341340simprbi 496 . . . . . . . . . . . . . . . 16 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
342341simprd 495 . . . . . . . . . . . . . . 15 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → (𝑢𝑋) = 0)
343342adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑢𝑋) = 0)
344343oveq2d 7426 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − (𝑢𝑋)) = ((𝑑𝑋) − 0))
34530adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℕ0)
346345nn0cnd 12569 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) ∈ ℂ)
347346subid1d 11588 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) − 0) = (𝑑𝑋))
348336, 344, 3473eqtrrd 2776 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (𝑑𝑋) = ((𝑑f𝑢)‘𝑋))
349348oveq1d 7425 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((𝑑𝑋) + 1) = (((𝑑f𝑢)‘𝑋) + 1))
350349oveq1d 7425 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
351350mpteq2dva 5219 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
352351oveq2d 7426 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
353326, 352oveq12d 7428 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
35423adantr 480 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp)
355106rabex 5314 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V
356355difexi 5305 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V
357356a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∈ V)
358320fmpttd 7110 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
359 ovex 7443 . . . . . . . . . . . 12 ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
360359, 323fnmpti 6686 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
361360a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
362361, 318, 113fndmfifsupp 9395 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3631, 104, 6, 357, 358, 362gsumcl 19901 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
364322fmpttd 7110 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})⟶(Base‘𝑅))
365 ovex 7443 . . . . . . . . . . . 12 ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ V
366365, 324fnmpti 6686 . . . . . . . . . . 11 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
367366a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
368367, 318, 113fndmfifsupp 9395 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3691, 104, 6, 357, 364, 368gsumcl 19901 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
370106rabex 5314 . . . . . . . . . 10 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V
371370a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ V)
372278sseli 3959 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
373372, 321sylan2 593 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
374373fmpttd 7110 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}⟶(Base‘𝑅))
375 eqid 2736 . . . . . . . . . . . 12 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
376365, 375fnmpti 6686 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}
377376a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})
378221, 279ssfid 9278 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ∈ Fin)
379377, 378, 113fndmfifsupp 9395 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
3801, 104, 6, 371, 374, 379gsumcl 19901 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
3811, 2, 354, 363, 369, 380grpassd 18933 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
382283, 353, 3813eqtrd 2775 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
383219, 382oveq12d 7428 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
384103, 115, 3833eqtr3d 2779 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
385 psdmul.m . . . . . 6 · = (.r𝑆)
3868adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐹𝐵)
38741adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝐺𝐵)
3889, 10, 34, 385, 14, 386, 387, 19psrmulval 21909 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
389388oveq2d 7426 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑𝑋) + 1)(.g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
390107difexi 5305 . . . . . . 7 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V
391390a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ V)
392 eldifi 4111 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
39338, 123syl 17 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢:𝐼⟶ℕ0)
394393adantl 481 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢:𝐼⟶ℕ0)
39528ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑋𝐼)
396394, 395ffvelcdmd 7080 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝑢𝑋) ∈ ℕ0)
3971, 22, 25, 396, 50mulgnn0cld 19083 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
398392, 397sylan2 593 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
399398fmpttd 7110 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))):({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})⟶(Base‘𝑅))
400 eqid 2736 . . . . . . . . 9 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
401359, 400fnmpti 6686 . . . . . . . 8 (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
402401a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
403 difssd 4117 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
40421, 403ssfid 9278 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∈ Fin)
405402, 404, 113fndmfifsupp 9395 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
4061, 104, 6, 391, 399, 405gsumcl 19901 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) ∈ (Base‘𝑅))
4071, 2, 354, 369, 380grpcld 18935 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))) ∈ (Base‘𝑅))
4081, 2, 354, 406, 363, 407grpassd 18933 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
409384, 389, 4083eqtr4d 2781 . . 3 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))))
410409mpteq2dva 5219 . 2 (𝜑 → (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
4119, 10, 385, 4, 8, 41psrmulcl 21911 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
4129, 10, 14, 28, 411psdval 22102 . 2 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑑𝑋) + 1)(.g𝑅)((𝐹 · 𝐺)‘(𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
413 psdmul.p . . . 4 + = (+g𝑆)
41423grpmgmd 18949 . . . . . 6 (𝜑𝑅 ∈ Mgm)
4159, 10, 414, 28, 8psdcl 22104 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4169, 10, 385, 4, 415, 41psrmulcl 21911 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∈ 𝐵)
4179, 10, 414, 28, 41psdcl 22104 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
4189, 10, 385, 4, 8, 417psrmulcl 21911 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) ∈ 𝐵)
4199, 10, 2, 413, 416, 418psradd 21902 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
4209, 1, 14, 10, 416psrelbas 21899 . . . . 5 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
421420ffnd 6712 . . . 4 (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4229, 1, 14, 10, 418psrelbas 21899 . . . . 5 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
423422ffnd 6712 . . . 4 (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) Fn { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
424106a1i 11 . . . 4 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
425 inidm 4207 . . . 4 ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∩ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
426415adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4279, 10, 34, 385, 14, 426, 387, 7psrmulval 21909 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))))
428355a1i 11 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∈ V)
4294ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑅 ∈ Ring)
430 elrabi 3671 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
4319, 1, 14, 10, 415psrelbas 21899 . . . . . . . . . . 11 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
432431adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
433432ffvelcdmda 7079 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
434430, 433sylan2 593 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅))
43542ad2antrr 726 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
43614, 243psrbagconcl 21892 . . . . . . . . . . 11 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
437436adantll 714 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
438 elrabi 3671 . . . . . . . . . 10 ((𝑑f𝑏) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
439437, 438syl 17 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑑f𝑏) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
440435, 439ffvelcdmd 7080 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘(𝑑f𝑏)) ∈ (Base‘𝑅))
4411, 34, 429, 434, 440ringcld 20225 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ (Base‘𝑅))
442441fmpttd 7110 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))):{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}⟶(Base‘𝑅))
443 ovex 7443 . . . . . . . . 9 (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) ∈ V
444 eqid 2736 . . . . . . . . 9 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))
445443, 444fnmpti 6686 . . . . . . . 8 (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
446445a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
447446, 221, 113fndmfifsupp 9395 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) finSupp (0g𝑅))
448 eqid 2736 . . . . . . 7 (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
449 df-of 7676 . . . . . . . . . 10 f + = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
450 vex 3468 . . . . . . . . . . 11 𝑢 ∈ V
451450a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → 𝑢 ∈ V)
452 ssv 3988 . . . . . . . . . . 11 {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V
453452a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ⊆ V)
454 ssv 3988 . . . . . . . . . . 11 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V
455454a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V)
456449, 451, 453, 455elimampo 7549 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
457456biimpa 476 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
458 elrabi 3671 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
45914psrbagf 21883 . . . . . . . . . . . . . . . 16 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑚:𝐼⟶ℕ0)
460459ffund 6715 . . . . . . . . . . . . . . 15 (𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → Fun 𝑚)
461458, 460syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → Fun 𝑚)
462461funfnd 6572 . . . . . . . . . . . . 13 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚 Fn dom 𝑚)
463462ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 Fn dom 𝑚)
464 velsn 4622 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
465 funmpt 6579 . . . . . . . . . . . . . . . 16 Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
466 funeq 6561 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (Fun 𝑛 ↔ Fun (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
467465, 466mpbiri 258 . . . . . . . . . . . . . . 15 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → Fun 𝑛)
468467funfnd 6572 . . . . . . . . . . . . . 14 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → 𝑛 Fn dom 𝑛)
469464, 468sylbi 217 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 Fn dom 𝑛)
470469ad2antll 729 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑛 Fn dom 𝑛)
471 vex 3468 . . . . . . . . . . . . . 14 𝑚 ∈ V
472471dmex 7910 . . . . . . . . . . . . 13 dom 𝑚 ∈ V
473472a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑚 ∈ V)
474 vex 3468 . . . . . . . . . . . . . 14 𝑛 ∈ V
475474dmex 7910 . . . . . . . . . . . . 13 dom 𝑛 ∈ V
476475a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑛 ∈ V)
477 eqid 2736 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) = (dom 𝑚 ∩ dom 𝑛)
478 eqidd 2737 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
479 eqidd 2737 . . . . . . . . . . . 12 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
480463, 470, 473, 476, 477, 478, 479offval 7685 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
481480eqeq2d 2747 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
482 elsni 4623 . . . . . . . . . . . . . 14 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
483482oveq2d 7426 . . . . . . . . . . . . 13 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
484483eqeq2d 2747 . . . . . . . . . . . 12 (𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
485484ad2antll 729 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
48613ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
487458, 459syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑚:𝐼⟶ℕ0)
488487adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
489131a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
490 nn0cn 12516 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0𝑞 ∈ ℂ)
491 nn0cn 12516 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℕ0𝑟 ∈ ℂ)
492 nn0cn 12516 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ0𝑠 ∈ ℂ)
493 addsubass 11497 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
494490, 491, 492, 493syl3an 1160 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
495494adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
496486, 488, 489, 489, 495caofass 7716 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
497 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → 𝑖𝐼)
49856a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℕ0)
49968, 76, 497, 498fvmptd3 7014 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
500133, 133, 13, 13, 72, 499, 499offval 7685 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
501500oveq2d 7426 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
502501ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
503237subidi 11559 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)) = 0
504503mpteq2i 5222 . . . . . . . . . . . . . . . . . 18 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ 0)
505 fconstmpt 5721 . . . . . . . . . . . . . . . . . 18 (𝐼 × {0}) = (𝑖𝐼 ↦ 0)
506504, 505eqtr4i 2762 . . . . . . . . . . . . . . . . 17 (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝐼 × {0})
507506oveq2i 7421 . . . . . . . . . . . . . . . 16 (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑚f + (𝐼 × {0}))
508 0zd 12605 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 0 ∈ ℤ)
509490addridd 11440 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ ℕ0 → (𝑞 + 0) = 𝑞)
510509adantl 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑞 ∈ ℕ0) → (𝑞 + 0) = 𝑞)
511486, 488, 508, 510caofid0r 7710 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
512507, 511eqtrid 2783 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
513496, 502, 5123eqtrd 2775 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
514 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
515513, 514eqeltrd 2835 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
516 oveq1 7417 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
517516eleq1d 2820 . . . . . . . . . . . . 13 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
518515, 517syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
519518adantrr 717 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
520485, 519sylbid 240 . . . . . . . . . 10 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
521481, 520sylbird 260 . . . . . . . . 9 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
522521rexlimdvva 3202 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
523457, 522mpd 15 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
524 simpr 484 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
52513mptexd 7221 . . . . . . . . . . 11 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V)
526 elsng 4620 . . . . . . . . . . 11 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
527525, 526syl 17 . . . . . . . . . 10 (𝜑 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
52868, 527mpbiri 258 . . . . . . . . 9 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
529528ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
530449mpofun 7536 . . . . . . . . 9 Fun ∘f +
531530a1i 11 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → Fun ∘f + )
532 xpss 5675 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ (V × V)
533472inex1 5292 . . . . . . . . . . . 12 (dom 𝑚 ∩ dom 𝑛) ∈ V
534533mptex 7220 . . . . . . . . . . 11 (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
535534rgen2w 3057 . . . . . . . . . 10 𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V
536449dmmpoga 8077 . . . . . . . . . 10 (∀𝑚 ∈ V ∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ∈ V → dom ∘f + = (V × V))
537535, 536mp1i 13 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → dom ∘f + = (V × V))
538532, 537sseqtrrid 4007 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ dom ∘f + )
539524, 529, 531, 538elovimad 7460 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})))
54013ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝐼 ∈ V)
541 elrabi 3671 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
54214psrbagf 21883 . . . . . . . . . . . . 13 (𝑣 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → 𝑣:𝐼⟶ℕ0)
543541, 542syl 17 . . . . . . . . . . . 12 (𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → 𝑣:𝐼⟶ℕ0)
544543ad2antll 729 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣:𝐼⟶ℕ0)
545131a1i 11 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
546494adantl 481 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ (𝑞 ∈ ℕ0𝑟 ∈ ℕ0𝑠 ∈ ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟𝑠)))
547540, 544, 545, 545, 546caofass 7716 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
548133ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
54978adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
550548, 548, 540, 540, 72, 549, 549offval 7685 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))
551550oveq2d 7426 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))))
552506oveq2i 7421 . . . . . . . . . . 11 (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑣f + (𝐼 × {0}))
553 0zd 12605 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 0 ∈ ℤ)
554 nn0cn 12516 . . . . . . . . . . . . . 14 (𝑝 ∈ ℕ0𝑝 ∈ ℂ)
555554addridd 11440 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ0 → (𝑝 + 0) = 𝑝)
556555adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
557540, 544, 553, 556caofid0r 7710 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝐼 × {0})) = 𝑣)
558552, 557eqtrid 2783 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑣)
559547, 551, 5583eqtrrd 2776 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
560 oveq1 7417 . . . . . . . . . 10 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
561560eqeq2d 2747 . . . . . . . . 9 (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = ((𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
562559, 561syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
56316ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
56414psrbagaddcl 21889 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
565458, 563, 564syl2an2 686 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
56614psrbagf 21883 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
567565, 566syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
568567adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)
569 feq1 6691 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢:𝐼⟶ℕ0 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0))
570568, 569syl5ibrcom 247 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢:𝐼⟶ℕ0))
571485, 570sylbid 240 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢:𝐼⟶ℕ0))
572481, 571sylbird 260 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
573572rexlimdvva 3202 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢:𝐼⟶ℕ0))
574457, 573mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℕ0)
575574adantrr 717 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢:𝐼⟶ℕ0)
576575ffvelcdmda 7079 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
577576nn0cnd 12569 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
578237a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
579577, 578npcand 11603 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
580579mpteq2dva 5219 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
581575ffnd 6712 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 Fn 𝐼)
582581, 548, 540, 540, 72offn 7689 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
583 eqidd 2737 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
584581, 548, 540, 540, 72, 583, 549ofval 7687 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
585582, 548, 540, 540, 72, 584, 549offval 7685 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
586575feqmptd 6952 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
587580, 585, 5863eqtr4rd 2782 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
588 oveq1 7417 . . . . . . . . . 10 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
589588eqeq2d 2747 . . . . . . . . 9 (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
590587, 589syl5ibrcom 247 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
591562, 590impbid 212 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) → (𝑢 = (𝑣f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
592448, 523, 539, 591f1o2d 7666 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))–1-1-onto→{𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
5931, 104, 6, 428, 442, 447, 592gsumf1o 19902 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))))) = (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
594555adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝)
595486, 488, 508, 594caofid0r 7710 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝐼 × {0})) = 𝑚)
596507, 595eqtrid 2783 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑖𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚)
597496, 502, 5963eqtrd 2775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚)
598597, 514eqeltrd 2835 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
599598, 517syl5ibrcom 247 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
600599adantrr 717 . . . . . . . . . . . . 13 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
601485, 600sylbid 240 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
602481, 601sylbird 260 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
603602rexlimdvva 3202 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}))
604457, 603mpd 15 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
605 eqidd 2737 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
606 eqidd 2737 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) = (𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))))
607 fveq2 6881 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
608 oveq2 7418 . . . . . . . . . . 11 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑑f𝑏) = (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
609608fveq2d 6885 . . . . . . . . . 10 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐺‘(𝑑f𝑏)) = (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
610607, 609oveq12d 7428 . . . . . . . . 9 (𝑏 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))
611604, 605, 606, 610fmptco 7124 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))))
61228ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑋𝐼)
6138ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹𝐵)
614 elrabi 3671 . . . . . . . . . . . . . 14 ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
615604, 614syl 17 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
6169, 10, 14, 612, 613, 615psdcoef 22103 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
617574ffnd 6712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 Fn 𝐼)
618131a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
619618ffnd 6712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
62013ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐼 ∈ V)
621 eqidd 2737 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → (𝑢𝑋) = (𝑢𝑋))
622 iftrue 4511 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1)
623 1ex 11236 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
624622, 68, 623fvmpt 6991 . . . . . . . . . . . . . . . . . 18 (𝑋𝐼 → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
625624adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
626617, 619, 620, 620, 72, 621, 625ofval 7687 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
627612, 626mpdan 687 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢𝑋) − 1))
628627oveq1d 7425 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (((𝑢𝑋) − 1) + 1))
629 nn0sscn 12511 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℂ
630629a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ℕ0 ⊆ ℂ)
631574, 630fssd 6728 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℂ)
632631, 612ffvelcdmd 7080 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℂ)
633 1cnd 11235 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 1 ∈ ℂ)
634632, 633npcand 11603 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋) − 1) + 1) = (𝑢𝑋))
635628, 634eqtrd 2771 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (𝑢𝑋))
636617, 619, 620, 620, 72offn 7689 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
637 eqidd 2737 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
63878adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
639617, 619, 620, 620, 72, 637, 638ofval 7687 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
640574ffvelcdmda 7079 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
641640nn0cnd 12569 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
642237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
643641, 642npcand 11603 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
644620, 636, 619, 617, 639, 638, 643offveq 7702 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑢)
645644fveq2d 6885 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹𝑢))
646635, 645oveq12d 7428 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g𝑅)(𝐹‘((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
647616, 646eqtrd 2771 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑢𝑋)(.g𝑅)(𝐹𝑢)))
64826ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑:𝐼⟶ℕ0)
649648ffvelcdmda 7079 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
650649nn0cnd 12569 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℂ)
651650, 641, 642subsub3d 11629 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0))) = (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖)))
652651mpteq2dva 5219 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
65365adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑 Fn 𝐼)
654 eqidd 2737 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
655653, 636, 620, 620, 72, 654, 639offval 7685 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑖𝐼 ↦ ((𝑑𝑖) − ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))))
656653, 619, 620, 620, 72offn 7689 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
657653, 619, 620, 620, 72, 654, 638ofval 7687 . . . . . . . . . . . . . 14 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
658656, 617, 620, 620, 72, 657, 637offval 7685 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) = (𝑖𝐼 ↦ (((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢𝑖))))
659652, 655, 6583eqtr4d 2781 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))
660659fveq2d 6885 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
661647, 660oveq12d 7428 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
6624ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Ring)
663574, 612ffvelcdmd 7080 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℕ0)
664663nn0zd 12619 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢𝑋) ∈ ℤ)
66536ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
666 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
66716ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
668 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
669 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
67014, 243, 669psrbagleadd1 21893 . . . . . . . . . . . . . . . . . . 19 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
671666, 667, 668, 670syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
672 eleq1 2823 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
673671, 672syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
674485, 673sylbid 240 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚f + 𝑛) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
675481, 674sylbird 260 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
676675rexlimdvva 3202 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}))
677457, 676mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
678 elrabi 3671 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
679677, 678syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
680665, 679ffvelcdmd 7080 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹𝑢) ∈ (Base‘𝑅))
68142ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐺:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
68219adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
68314, 669psrbagconcl 21892 . . . . . . . . . . . . . 14 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
684682, 677, 683syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
685 elrabi 3671 . . . . . . . . . . . . 13 (((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ {𝑙 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑙r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
686684, 685syl 17 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
687681, 686ffvelcdmd 7080 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))
6881, 22, 34mulgass2 20274 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑢𝑋) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
689662, 664, 680, 687, 688syl13anc 1374 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢𝑋)(.g𝑅)(𝐹𝑢))(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
690661, 689eqtrd 2771 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
691690mpteq2dva 5219 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r𝑅)(𝐺‘(𝑑f − (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
692611, 691eqtrd 2771 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
693692oveq2d 7426 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
694 snex 5411 . . . . . . . . . 10 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ V
695355, 694xpex 7752 . . . . . . . . 9 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∈ V
696695funimaex 6630 . . . . . . . 8 (Fun ∘f + → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
697530, 696mp1i 13 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V)
69824ad2antrr 726 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Mnd)
6991, 34, 662, 680, 687ringcld 20225 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))) ∈ (Base‘𝑅))
7001, 22, 698, 663, 699mulgnn0cld 19083 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) ∈ (Base‘𝑅))
701 eqid 2736 . . . . . . . . . . 11 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
702359, 701fnmpti 6686 . . . . . . . . . 10 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}
703702a1i 11 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) Fn {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
704703, 21, 113fndmfifsupp 9395 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
705462ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑚 Fn dom 𝑚)
706469adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑛 Fn dom 𝑛)
707472a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑚 ∈ V)
708475a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑛 ∈ V)
709 eqidd 2737 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑚) → (𝑚𝑜) = (𝑚𝑜))
710 eqidd 2737 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑛) → (𝑛𝑜) = (𝑛𝑜))
711705, 706, 707, 708, 477, 709, 710offval 7685 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑚f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))))
712711eqeq2d 2747 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
713712rexbidva 3163 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ ∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜)))))
71416ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
715 oveq2 7418 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑚f + 𝑛) = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
716715eqeq2d 2747 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
717716rexsng 4657 . . . . . . . . . . . . . . 15 ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
718714, 717syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚f + 𝑛) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
719713, 718bitr3d 281 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ 𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
720719rexbidva 3163 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}∃𝑛 ∈ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚𝑜) + (𝑛𝑜))) ↔ ∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
721 breq1 5127 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
722 breq1 5127 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
723 fveq1 6880 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘𝑋) = ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋))
724723eqeq1d 2738 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘𝑋) = 0 ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
725722, 724anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
726725notbid 318 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
727721, 726anbi12d 632 . . . . . . . . . . . . . . 15 (𝑘 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))))
728458, 714, 564syl2an2 686 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
729 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
730 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
73114, 243, 44psrbagleadd1 21893 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
732729, 714, 730, 731syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
733721elrab 3676 . . . . . . . . . . . . . . . . . 18 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
734733simprbi 496 . . . . . . . . . . . . . . . . 17 ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
735732, 734syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
73628ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑋𝐼)
737487adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚:𝐼⟶ℕ0)
738737ffnd 6712 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝑚 Fn 𝐼)
739133ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
74013ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐼 ∈ V)
741 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → (𝑚𝑋) = (𝑚𝑋))
742624adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1)
743738, 739, 740, 740, 72, 741, 742ofval 7687 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∧ 𝑋𝐼) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
744736, 743mpdan 687 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚𝑋) + 1))
745737, 736ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚𝑋) ∈ ℕ0)
746 nn0p1nn 12545 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚𝑋) ∈ ℕ0 → ((𝑚𝑋) + 1) ∈ ℕ)
747745, 746syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚𝑋) + 1) ∈ ℕ)
748744, 747eqeltrd 2835 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ∈ ℕ)
749748nnne0d 12295 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ≠ 0)
750749neneqd 2938 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)
751750intnand 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))
752735, 751jca 511 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ∧ ((𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))
753727, 728, 752elrabd 3678 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
754 eleq1 2823 . . . . . . . . . . . . . 14 (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
755753, 754syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
756 breq1 5127 . . . . . . . . . . . . . 14 (𝑘 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘r𝑑 ↔ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑))
757 elrabi 3671 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
758757adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
759131a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0)
760757, 123syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢:𝐼⟶ℕ0)
761760adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢:𝐼⟶ℕ0)
76228ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑋𝐼)
763761, 762ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ0)
764339notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑘 = 𝑢 → (¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
765118, 764anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 = 𝑢 → ((𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)) ↔ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
766765elrab 3676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} ↔ (𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))))
767766simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0)))
768767simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
769768adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
770769adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
771757, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → 𝑢 Fn 𝐼)
772771adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 Fn 𝐼)
773772adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢 Fn 𝐼)
77419adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
77588ffnd 6712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
776774, 775syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
777776adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
77813ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝐼 ∈ V)
779 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
780 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
781773, 777, 778, 778, 72, 779, 780ofrfval 7686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)))
782770, 781mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
783782r19.21bi 3238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
784783adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))
78565ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝑑 Fn 𝐼)
78669a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
78713ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) → 𝐼 ∈ V)
788 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
78978adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
790785, 786, 787, 787, 72, 788, 789ofval 7687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝑋) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
791790an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
792158adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → if(𝑖 = 𝑋, 1, 0) = 0)
793792oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑𝑖) + 0))
79427ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑:𝐼⟶ℕ0)
795794ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
796795adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℕ0)
797796nn0cnd 12569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℂ)
798797addridd 11440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑𝑖) + 0) = (𝑑𝑖))
799791, 793, 7983eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = (𝑑𝑖))
800784, 799breqtrd 5150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) ∧ 𝑖𝑋) → (𝑢𝑖) ≤ (𝑑𝑖))
801 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) = 0)
80227adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑:𝐼⟶ℕ0)
803802, 762ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑑𝑋) ∈ ℕ0)
804803nn0ge0d 12570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 0 ≤ (𝑑𝑋))
805804adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 0 ≤ (𝑑𝑋))
806801, 805eqbrtrd 5146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢𝑋) ≤ (𝑑𝑋))
807806adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑋) ≤ (𝑑𝑋))
808175, 800, 807pm2.61ne 3018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ (𝑑𝑖))
809808ralrimiva 3133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖))
81065adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑑 Fn 𝐼)
811810adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑑 Fn 𝐼)
812 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
813773, 811, 778, 778, 72, 779, 812ofrfval 7686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → (𝑢r𝑑 ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ (𝑑𝑖)))
814809, 813mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ (𝑢𝑋) = 0) → 𝑢r𝑑)
815814ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → 𝑢r𝑑))
816767simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))} → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
817816adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
818 imnan 399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢r𝑑 → ¬ (𝑢𝑋) = 0) ↔ ¬ (𝑢r𝑑 ∧ (𝑢𝑋) = 0))
819817, 818sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r𝑑 → ¬ (𝑢𝑋) = 0))
820819con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢𝑋) = 0 → ¬ 𝑢r𝑑))
821815, 820pm2.65d 196 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ¬ (𝑢𝑋) = 0)
822821neqned 2940 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ≠ 0)
823763, 822, 191sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢𝑋) ∈ ℕ)
824823nnge1d 12293 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 1 ≤ (𝑢𝑋))
825824adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 1 ≤ (𝑢𝑋))
826173breq2d 5136 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑋 → (1 ≤ (𝑢𝑖) ↔ 1 ≤ (𝑢𝑋)))
827825, 826syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑖 = 𝑋 → 1 ≤ (𝑢𝑖)))
828827imp 406 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ 𝑖 = 𝑋) → 1 ≤ (𝑢𝑖))
829761ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℕ0)
830829nn0ge0d 12570 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → 0 ≤ (𝑢𝑖))
831830adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) ∧ ¬ 𝑖 = 𝑋) → 0 ≤ (𝑢𝑖))
832828, 831ifpimpda 1080 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
833 brif1 7509 . . . . . . . . . . . . . . . . . . 19 (if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖) ↔ if-(𝑖 = 𝑋, 1 ≤ (𝑢𝑖), 0 ≤ (𝑢𝑖)))
834832, 833sylibr 234 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
835834ralrimiva 3133 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖))
83669a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼)
83713ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝐼 ∈ V)
83878adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0))
839 eqidd 2737 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) = (𝑢𝑖))
840836, 772, 837, 837, 72, 838, 839ofrfval 7686 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢 ↔ ∀𝑖𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢𝑖)))
841835, 840mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢)
84214psrbagcon 21890 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 ∧ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r𝑢) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
843758, 759, 841, 842syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∧ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑢))
844843simpld 494 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
845 eqidd 2737 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) = (𝑑𝑖))
846810, 836, 837, 837, 72, 845, 838ofval 7687 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
847772, 776, 837, 837, 72, 839, 846ofrfval 7686 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
848769, 847mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
849848r19.21bi 3238 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0)))
850829nn0red 12568 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℝ)
85160a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ)
852802ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℕ0)
853852nn0red 12568 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑑𝑖) ∈ ℝ)
854850, 851, 853lesubaddd 11839 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖) ↔ (𝑢𝑖) ≤ ((𝑑𝑖) + if(𝑖 = 𝑋, 1, 0))))
855849, 854mpbird 257 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
856855ralrimiva 3133 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖))
857772, 836, 837, 837, 72offn 7689 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼)
858772, 836, 837, 837, 72, 839, 838ofval 7687 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)))
859857, 810, 837, 837, 72, 858, 845ofrfval 7686 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑 ↔ ∀𝑖𝐼 ((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑𝑖)))
860856, 859mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r𝑑)
861756, 844, 860elrabd 3678 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})
862829nn0cnd 12569 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (𝑢𝑖) ∈ ℂ)
863237a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ)
864862, 863npcand 11603 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) ∧ 𝑖𝐼) → (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢𝑖))
865864mpteq2dva 5219 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (𝑢𝑖)))
866857, 836, 837, 837, 72, 858, 838offval 7685 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖𝐼 ↦ (((𝑢𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))))
867761feqmptd 6952 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = (𝑖𝐼 ↦ (𝑢𝑖)))
868865, 866, 8673eqtr4rd 2782 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}) → 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
869 oveq1 7417 . . . . . . . . . . . . . 14 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
870869eqeq2d 2747 . . . . . . . . . . . . 13 (𝑚 = (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))
871755, 861, 868, 870rspceb2dv 3610 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (∃𝑚 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}𝑢 = (𝑚f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
872456, 720, 8713bitrd 305 . . . . . . . . . . 11 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}))
873872eqrdv 2734 . . . . . . . . . 10 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))})
874 difrab 4298 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) = {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘r𝑑 ∧ (𝑘𝑋) = 0))}
875873, 874eqtr4di 2789 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
876 difssd 4117 . . . . . . . . 9 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
877875, 876eqsstrd 3998 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})
878704, 877, 113fmptssfisupp 9411 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))) finSupp (0g𝑅))
879 difss 4116 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}
880 disjdif 4452 . . . . . . . . . 10 ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
881 ssdisj 4440 . . . . . . . . . 10 ((({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ⊆ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∧ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅)
882879, 880, 881mp2an 692 . . . . . . . . 9 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑})) = ∅
883882ineqcomi 4191 . . . . . . . 8 (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅
884883a1i 11 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∩ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ∅)
885279, 99psdmullem 22108 . . . . . . . 8 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})) = ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}))
886875, 885eqtr4d 2774 . . . . . . 7 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = (({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ∪ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)})))
8871, 104, 2, 6, 697, 700, 878, 884, 886gsumsplit2 19915 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
888693, 887eqtrd 2771 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r𝑅)(𝐺‘(𝑑f𝑏)))) ∘ (𝑢 ∈ ( ∘f + “ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} × {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢f − (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
889427, 593, 8883eqtrd 2775 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
890417adantr 480 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵)
8919, 10, 34, 385, 14, 386, 890, 7psrmulval 21909 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))))
89241ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → 𝐺𝐵)
8939, 10, 14, 285, 892, 247psdcoef 22103 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))
894267fveq2d 6885 . . . . . . . . . . 11 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))
895894oveq2d 7426 . . . . . . . . . 10 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f𝑢) ∘f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
896893, 895eqtrd 2771 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))
897896oveq2d 7426 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
898309nn0zd 12619 . . . . . . . . 9 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → (((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ)
8991, 22, 34mulgass3 20318 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((((𝑑f𝑢)‘𝑋) + 1) ∈ ℤ ∧ (𝐹𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)) ∈ (Base‘𝑅))) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
900224, 898, 228, 271, 899syl13anc 1374 . . . . . . . 8 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
901897, 900eqtrd 2771 . . . . . . 7 (((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) → ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))) = ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))
902901mpteq2dva 5219 . . . . . 6 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢)))) = (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))
903902oveq2d 7426 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((𝐹𝑢)(.r𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑f𝑢))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))
9041, 2, 6, 221, 321, 275, 282gsummptfidmsplit 19916 . . . . 5 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
905891, 903, 9043eqtrd 2775 . . . 4 ((𝜑𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))
906421, 423, 424, 424, 425, 889, 905offval 7685 . . 3 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f (+g𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
907419, 906eqtrd 2771 . 2 (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r ≤ (𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((𝑢𝑋)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢)))))))(+g𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑘r𝑑} ∖ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)}) ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))(+g𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ (𝑘r𝑑 ∧ (𝑘𝑋) = 0)} ↦ ((((𝑑f𝑢)‘𝑋) + 1)(.g𝑅)((𝐹𝑢)(.r𝑅)(𝐺‘((𝑑f + (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f𝑢))))))))))
908410, 412, 9073eqtr4d 2781 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  if-wif 1062  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  ifcif 4505  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  ccnv 5658  dom cdm 5659  cima 5662  ccom 5663  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  r cofr 7675  m cmap 8845  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cn 12245  0cn0 12506  cz 12593  ..^cfzo 13676  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  Grpcgrp 18921  .gcmg 19055  CMndccmn 19766  Ringcrg 20198  CRingccrg 20199   mPwSer cmps 21869   mPSDer cpsd 22073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-tset 17295  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-psr 21874  df-psd 22099
This theorem is referenced by:  psd1  22110  psdpw  22113
  Copyright terms: Public domain W3C validator