Step | Hyp | Ref
| Expression |
1 | | eqid 2734 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | eqid 2734 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
3 | | psdmul.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CRing) |
4 | 3 | crngringd 20263 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
5 | 4 | ringcmnd 20297 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd) |
7 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
8 | | psdmul.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
9 | | psdmul.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
10 | | psdmul.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑆) |
11 | | reldmpsr 21951 |
. . . . . . . . . . . 12
⊢ Rel dom
mPwSer |
12 | 9, 10, 11 | strov2rcl 17252 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
13 | 8, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ V) |
14 | | eqid 2734 |
. . . . . . . . . . 11
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
15 | 14 | psrbagsn 22104 |
. . . . . . . . . 10
⊢ (𝐼 ∈ V → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
16 | 13, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
18 | 14 | psrbagaddcl 21961 |
. . . . . . . 8
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
19 | 7, 17, 18 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
20 | 14 | psrbaglefi 21963 |
. . . . . . 7
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ Fin) |
22 | | eqid 2734 |
. . . . . . 7
⊢
(.g‘𝑅) = (.g‘𝑅) |
23 | 3 | crnggrpd 20264 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Grp) |
24 | 23 | grpmndd 18976 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
25 | 24 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Mnd) |
26 | 14 | psrbagf 21955 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑑:𝐼⟶ℕ0) |
27 | 26 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
28 | | psdmul.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
29 | 28 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
30 | 27, 29 | ffvelcdmd 7104 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈
ℕ0) |
31 | | peano2nn0 12563 |
. . . . . . . . 9
⊢ ((𝑑‘𝑋) ∈ ℕ0 → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
33 | 32 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
34 | | eqid 2734 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
35 | 4 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑅 ∈ Ring) |
36 | 9, 1, 14, 10, 8 | psrelbas 21971 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
37 | 36 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
38 | | elrabi 3689 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
40 | 37, 39 | ffvelcdmd 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
41 | | psdmul.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
42 | 9, 1, 14, 10, 41 | psrelbas 21971 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
43 | 42 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
44 | | eqid 2734 |
. . . . . . . . . . . 12
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
45 | 14, 44 | psrbagconcl 21964 |
. . . . . . . . . . 11
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
46 | 19, 45 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
47 | | elrabi 3689 |
. . . . . . . . . 10
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
48 | 46, 47 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
49 | 43, 48 | ffvelcdmd 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
50 | 1, 34, 35, 40, 49 | ringcld 20276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
51 | 1, 22, 25, 33, 50 | mulgnn0cld 19125 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
52 | | disjdifr 4478 |
. . . . . . 7
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = ∅ |
53 | 52 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = ∅) |
54 | | 1nn0 12539 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ0 |
55 | | 0nn0 12538 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℕ0 |
56 | 54, 55 | ifcli 4577 |
. . . . . . . . . . . . . . 15
⊢ if(𝑖 = 𝑋, 1, 0) ∈
ℕ0 |
57 | 56 | nn0ge0i 12550 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
if(𝑖 = 𝑋, 1, 0) |
58 | 27 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
59 | 58 | nn0red 12585 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℝ) |
60 | 56 | nn0rei 12534 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑖 = 𝑋, 1, 0) ∈ ℝ |
61 | 60 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ) |
62 | 59, 61 | addge01d 11848 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (0 ≤ if(𝑖 = 𝑋, 1, 0) ↔ (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
63 | 57, 62 | mpbii 233 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
64 | 63 | ralrimiva 3143 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
∀𝑖 ∈ 𝐼 (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
65 | 27 | ffnd 6737 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼) |
66 | 54, 55 | ifcli 4577 |
. . . . . . . . . . . . . . . . 17
⊢ if(𝑦 = 𝑋, 1, 0) ∈
ℕ0 |
67 | 66 | elexi 3500 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑦 = 𝑋, 1, 0) ∈ V |
68 | | eqid 2734 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) |
69 | 67, 68 | fnmpti 6711 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼 |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
71 | 13 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ V) |
72 | | inidm 4234 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
73 | 65, 70, 71, 71, 72 | offn 7709 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
74 | | eqidd 2735 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
75 | | eqeq1 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑖 → (𝑦 = 𝑋 ↔ 𝑖 = 𝑋)) |
76 | 75 | ifbid 4553 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑖 → if(𝑦 = 𝑋, 1, 0) = if(𝑖 = 𝑋, 1, 0)) |
77 | 56 | elexi 3500 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑖 = 𝑋, 1, 0) ∈ V |
78 | 76, 68, 77 | fvmpt 7015 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ 𝐼 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
79 | 78 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
80 | 65, 70, 71, 71, 72, 74, 79 | ofval 7707 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
81 | 65, 73, 71, 71, 72, 74, 80 | ofrfval 7706 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑑‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
82 | 64, 81 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
83 | 82 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
84 | 13 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ V) |
85 | 14 | psrbagf 21955 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑘:𝐼⟶ℕ0) |
86 | 85 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0) |
87 | 27 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
88 | 14 | psrbagf 21955 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
89 | 19, 88 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
90 | 89 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
91 | | nn0re 12532 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ0
→ 𝑞 ∈
ℝ) |
92 | | nn0re 12532 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℕ0
→ 𝑟 ∈
ℝ) |
93 | | nn0re 12532 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ0
→ 𝑠 ∈
ℝ) |
94 | | letr 11352 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
95 | 91, 92, 93, 94 | syl3an 1159 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
96 | 95 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0)) → ((𝑞 ≤ 𝑟 ∧ 𝑟 ≤ 𝑠) → 𝑞 ≤ 𝑠)) |
97 | 84, 86, 87, 90, 96 | caoftrn 7736 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑘 ∘r ≤ 𝑑 ∧ 𝑑 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) → 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
98 | 83, 97 | mpan2d 694 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑘 ∘r ≤ 𝑑 → 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
99 | 98 | ss2rabdv 4085 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
100 | | undifr 4488 |
. . . . . . . 8
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
101 | 99, 100 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
102 | 101 | eqcomd 2740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
103 | 1, 2, 6, 21, 51, 53, 102 | gsummptfidmsplit 19962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
104 | | eqid 2734 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
105 | | ovex 7463 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
106 | 105 | rabex 5344 |
. . . . . . . 8
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
107 | 106 | rabex 5344 |
. . . . . . 7
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V |
108 | 107 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∈ V) |
109 | | ovex 7463 |
. . . . . . . . 9
⊢ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ V |
110 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
111 | 109, 110 | fnmpti 6711 |
. . . . . . . 8
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
112 | 111 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
113 | | fvexd 6921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(0g‘𝑅)
∈ V) |
114 | 112, 21, 113 | fndmfifsupp 9415 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) finSupp
(0g‘𝑅)) |
115 | 1, 104, 22, 108, 50, 114, 6, 32 | gsummulg 19974 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
116 | | difrab 4323 |
. . . . . . . . . . 11
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)} |
117 | 116 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)}) |
118 | | breq1 5150 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑢 → (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
119 | | breq1 5150 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑢 → (𝑘 ∘r ≤ 𝑑 ↔ 𝑢 ∘r ≤ 𝑑)) |
120 | 119 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑢 → (¬ 𝑘 ∘r ≤ 𝑑 ↔ ¬ 𝑢 ∘r ≤ 𝑑)) |
121 | 118, 120 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑) ↔ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) |
122 | 121 | elrab 3694 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) |
123 | 14 | psrbagf 21955 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑢:𝐼⟶ℕ0) |
124 | 123 | ffnd 6737 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑢 Fn 𝐼) |
125 | 124 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢 Fn 𝐼) |
126 | 73 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
127 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐼 ∈ V) |
128 | | eqidd 2735 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
129 | 65 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑 Fn 𝐼) |
130 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝐼 → if(𝑦 = 𝑋, 1, 0) ∈
ℕ0) |
131 | 68, 130 | fmpti 7131 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 |
132 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
133 | 132 | ffnd 6737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
134 | 133 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
135 | | eqidd 2735 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
136 | 78 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
137 | 129, 134,
127, 127, 72, 135, 136 | ofval 7707 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
138 | 125, 126,
127, 127, 72, 128, 137 | ofrfval 7706 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
139 | 125, 129,
127, 127, 72, 128, 135 | ofrfval 7706 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
140 | 139 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬
𝑢 ∘r ≤
𝑑 ↔ ¬
∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
141 | | rexnal 3097 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑖 ∈
𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ ¬ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
142 | 140, 141 | bitr4di 289 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (¬
𝑢 ∘r ≤
𝑑 ↔ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
143 | 138, 142 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑) ↔ (∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
144 | 30 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) ∈
ℕ0) |
145 | 123 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢:𝐼⟶ℕ0) |
146 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
147 | 145, 146 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈
ℕ0) |
148 | 147 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈
ℕ0) |
149 | 148 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈
ℕ0) |
150 | | nn0nlt0 12549 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑑‘𝑋) ∈ ℕ0 → ¬
(𝑑‘𝑋) < 0) |
151 | 144, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (𝑑‘𝑋) < 0) |
152 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑑:𝐼⟶ℕ0) |
153 | 152 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
154 | 153 | nn0cnd 12586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
155 | 154 | addridd 11458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑑‘𝑖) + 0) = (𝑑‘𝑖)) |
156 | 155 | breq2d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) ↔ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
157 | 156 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
158 | | ifnefalse 4542 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 ≠ 𝑋 → if(𝑖 = 𝑋, 1, 0) = 0) |
159 | 158 | oveq2d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑖 ≠ 𝑋 → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + 0)) |
160 | 159 | breq2d 5159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑖 ≠ 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0))) |
161 | 160 | imbi1d 341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ≠ 𝑋 → (((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) ↔ ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + 0) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
162 | 157, 161 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → (𝑖 ≠ 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
163 | 162 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
164 | 163 | impancom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑖 ≠ 𝑋 → (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
165 | 164 | necon1bd 2955 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → 𝑖 = 𝑋)) |
166 | 165 | ancrd 551 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) ∧ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
167 | 166 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))))) |
168 | 167 | ralimdva 3164 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → ∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))))) |
169 | 168 | anim1d 611 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → (∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
170 | 169 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
171 | | rexim 3084 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → ∃𝑖 ∈ 𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)))) |
172 | 171 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ∃𝑖 ∈ 𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
173 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑋 → (𝑢‘𝑖) = (𝑢‘𝑋)) |
174 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑋 → (𝑑‘𝑖) = (𝑑‘𝑋)) |
175 | 173, 174 | breq12d 5160 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 = 𝑋 → ((𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
176 | 175 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑋 → (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) ↔ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
177 | 176 | ceqsrexbv 3655 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∃𝑖 ∈
𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) ↔ (𝑋 ∈ 𝐼 ∧ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
178 | 177 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑖 ∈
𝐼 (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
179 | 172, 178 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑖 ∈
𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖)) → ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
180 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈
ℕ0) |
181 | 180 | nn0red 12585 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈ ℝ) |
182 | 148 | nn0red 12585 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢‘𝑋) ∈ ℝ) |
183 | 181, 182 | ltnled 11405 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑‘𝑋) < (𝑢‘𝑋) ↔ ¬ (𝑢‘𝑋) ≤ (𝑑‘𝑋))) |
184 | 183 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ ¬
(𝑢‘𝑋) ≤ (𝑑‘𝑋)) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
185 | 179, 184 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖) → (𝑖 = 𝑋 ∧ ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
186 | 170, 185 | syldan 591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) < (𝑢‘𝑋)) |
187 | | breq2 5151 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢‘𝑋) = 0 → ((𝑑‘𝑋) < (𝑢‘𝑋) ↔ (𝑑‘𝑋) < 0)) |
188 | 186, 187 | syl5ibcom 245 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑢‘𝑋) = 0 → (𝑑‘𝑋) < 0)) |
189 | 151, 188 | mtod 198 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (𝑢‘𝑋) = 0) |
190 | 189 | neqned 2944 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ≠ 0) |
191 | | elnnne0 12537 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢‘𝑋) ∈ ℕ ↔ ((𝑢‘𝑋) ∈ ℕ0 ∧ (𝑢‘𝑋) ≠ 0)) |
192 | 149, 190,
191 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈ ℕ) |
193 | | elfzo0 13736 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋)) ↔ ((𝑑‘𝑋) ∈ ℕ0 ∧ (𝑢‘𝑋) ∈ ℕ ∧ (𝑑‘𝑋) < (𝑢‘𝑋))) |
194 | 144, 192,
186, 193 | syl3anbrc 1342 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋))) |
195 | | fzostep1 13818 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑‘𝑋) ∈ (0..^(𝑢‘𝑋)) → (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ∨ ((𝑑‘𝑋) + 1) = (𝑢‘𝑋))) |
196 | 194, 195 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ∨ ((𝑑‘𝑋) + 1) = (𝑢‘𝑋))) |
197 | 149 | nn0red 12585 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ∈ ℝ) |
198 | 32 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
199 | 198 | nn0red 12585 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) ∈ ℝ) |
200 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑋 ∈ 𝐼) |
201 | | iftrue 4536 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑋 → if(𝑖 = 𝑋, 1, 0) = 1) |
202 | 174, 201 | oveq12d 7448 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑋 → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑋) + 1)) |
203 | 173, 202 | breq12d 5160 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑋 → ((𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ↔ (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
204 | 203 | rspcv 3617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ 𝐼 → (∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
205 | 200, 204 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1))) |
206 | 205 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1)) |
207 | 206 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → (𝑢‘𝑋) ≤ ((𝑑‘𝑋) + 1)) |
208 | 197, 199,
207 | lensymd 11409 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋)) |
209 | 208 | intn3an3d 1480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ (((𝑑‘𝑋) + 1) ∈ ℕ0 ∧
(𝑢‘𝑋) ∈ ℕ ∧ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋))) |
210 | | elfzo0 13736 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋)) ↔ (((𝑑‘𝑋) + 1) ∈ ℕ0 ∧
(𝑢‘𝑋) ∈ ℕ ∧ ((𝑑‘𝑋) + 1) < (𝑢‘𝑋))) |
211 | 209, 210 | sylnibr 329 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ¬ ((𝑑‘𝑋) + 1) ∈ (0..^(𝑢‘𝑋))) |
212 | 196, 211 | orcnd 878 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧
(∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) ∧ ∃𝑖 ∈ 𝐼 ¬ (𝑢‘𝑖) ≤ (𝑑‘𝑖))) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
213 | 143, 212 | sylbida 592 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑)) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
214 | 213 | anasss 466 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑢 ∘r ≤ 𝑑))) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
215 | 122, 214 | sylan2b 594 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ 𝑘 ∘r ≤ 𝑑)}) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
216 | 117, 215 | sylan2b 594 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑑‘𝑋) + 1) = (𝑢‘𝑋)) |
217 | 216 | oveq1d 7445 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
218 | 217 | mpteq2dva 5247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
219 | 218 | oveq2d 7446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
220 | 14 | psrbaglefi 21963 |
. . . . . . . . 9
⊢ (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ Fin) |
221 | 220 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ Fin) |
222 | 24 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Mnd) |
223 | 32 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑‘𝑋) + 1) ∈
ℕ0) |
224 | 4 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Ring) |
225 | | elrabi 3689 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
226 | 36 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
227 | 226 | ffvelcdmda 7103 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
228 | 225, 227 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
229 | 42 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
230 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑:𝐼⟶ℕ0) |
231 | 230 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
232 | 231 | nn0cnd 12586 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
233 | 225, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑢:𝐼⟶ℕ0) |
234 | 233 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢:𝐼⟶ℕ0) |
235 | 234 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
236 | 235 | nn0cnd 12586 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
237 | 56 | nn0cni 12535 |
. . . . . . . . . . . . . . . . 17
⊢ if(𝑖 = 𝑋, 1, 0) ∈ ℂ |
238 | 237 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
239 | 232, 236,
238 | subadd23d 11639 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢‘𝑖)))) |
240 | 232, 238,
236 | addsubassd 11637 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)) = ((𝑑‘𝑖) + (if(𝑖 = 𝑋, 1, 0) − (𝑢‘𝑖)))) |
241 | 239, 240 | eqtr4d 2777 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)) = (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖))) |
242 | 241 | mpteq2dva 5247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
243 | | eqid 2734 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
244 | 14, 243 | psrbagconcl 21964 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
245 | | elrabi 3689 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∘f −
𝑢) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
246 | 244, 245 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
247 | 246 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
248 | 14 | psrbagf 21955 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑑 ∘f −
𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f −
𝑢):𝐼⟶ℕ0) |
249 | 247, 248 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢):𝐼⟶ℕ0) |
250 | 249 | ffnd 6737 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑢) Fn 𝐼) |
251 | 69 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
252 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ V) |
253 | 230 | ffnd 6737 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 Fn 𝐼) |
254 | 234 | ffnd 6737 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢 Fn 𝐼) |
255 | | eqidd 2735 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
256 | | eqidd 2735 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
257 | 253, 254,
252, 252, 72, 255, 256 | ofval 7707 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑖) = ((𝑑‘𝑖) − (𝑢‘𝑖))) |
258 | 78 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
259 | 250, 251,
252, 252, 72, 257, 258 | offval 7705 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) − (𝑢‘𝑖)) + if(𝑖 = 𝑋, 1, 0)))) |
260 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
261 | 16 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
262 | 260, 261,
18 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
263 | 262, 88 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
264 | 263 | ffnd 6737 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
265 | 253, 251,
252, 252, 72, 255, 258 | ofval 7707 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
266 | 264, 254,
252, 252, 72, 265, 256 | offval 7705 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
267 | 242, 259,
266 | 3eqtr4d 2784 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) |
268 | 14 | psrbagaddcl 21961 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∘f −
𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑑 ∘f −
𝑢) ∘f +
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
269 | 247, 261,
268 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
270 | 267, 269 | eqeltrrd 2839 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
271 | 229, 270 | ffvelcdmd 7104 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
272 | 1, 34, 224, 228, 271 | ringcld 20276 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
273 | 1, 22, 222, 223, 272 | mulgnn0cld 19125 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
274 | | disjdifr 4478 |
. . . . . . . . 9
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = ∅ |
275 | 274 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = ∅) |
276 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) → 𝑘 ∘r ≤ 𝑑) |
277 | 276 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) → 𝑘 ∘r ≤ 𝑑)) |
278 | 277 | ss2rabi 4086 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
279 | 278 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
280 | | undifr 4488 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↔ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
281 | 279, 280 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
282 | 281 | eqcomd 2740 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∪ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
283 | 1, 2, 6, 221, 273, 275, 282 | gsummptfidmsplit 19962 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
284 | | eldifi 4140 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
285 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑋 ∈ 𝐼) |
286 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑑‘𝑋) = (𝑑‘𝑋)) |
287 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
288 | 253, 254,
252, 252, 72, 286, 287 | ofval 7707 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
289 | 285, 288 | mpdan 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
290 | 284, 289 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
291 | 290 | oveq2d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) = ((𝑢‘𝑋) + ((𝑑‘𝑋) − (𝑢‘𝑋)))) |
292 | 234, 285 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢‘𝑋) ∈
ℕ0) |
293 | 284, 292 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑢‘𝑋) ∈
ℕ0) |
294 | 293 | nn0cnd 12586 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑢‘𝑋) ∈ ℂ) |
295 | 30 | nn0cnd 12586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑑‘𝑋) ∈ ℂ) |
296 | 295 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (𝑑‘𝑋) ∈ ℂ) |
297 | 294, 296 | pncan3d 11620 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑‘𝑋) − (𝑢‘𝑋))) = (𝑑‘𝑋)) |
298 | 291, 297 | eqtrd 2774 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) = (𝑑‘𝑋)) |
299 | 298 | oveq1d 7445 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) + 1) = ((𝑑‘𝑋) + 1)) |
300 | 249, 285 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈
ℕ0) |
301 | 284, 300 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈
ℕ0) |
302 | 301 | nn0cnd 12586 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑 ∘f − 𝑢)‘𝑋) ∈ ℂ) |
303 | | 1cnd 11253 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → 1 ∈
ℂ) |
304 | 294, 302,
303 | addassd 11280 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + ((𝑑 ∘f − 𝑢)‘𝑋)) + 1) = ((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))) |
305 | 299, 304 | eqtr3d 2776 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑑‘𝑋) + 1) = ((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))) |
306 | 305 | oveq1d 7445 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
307 | 24 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → 𝑅 ∈ Mnd) |
308 | | peano2nn0 12563 |
. . . . . . . . . . . . . . 15
⊢ (((𝑑 ∘f −
𝑢)‘𝑋) ∈ ℕ0 → (((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈
ℕ0) |
309 | 300, 308 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈
ℕ0) |
310 | 284, 309 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈
ℕ0) |
311 | 284, 272 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
312 | 1, 22, 2 | mulgnn0dir 19134 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Mnd ∧ ((𝑢‘𝑋) ∈ ℕ0 ∧ (((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈ ℕ0 ∧
((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅))) → (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
313 | 307, 293,
310, 311, 312 | syl13anc 1371 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑢‘𝑋) + (((𝑑 ∘f − 𝑢)‘𝑋) + 1))(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
314 | 306, 313 | eqtrd 2774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
315 | 314 | mpteq2dva 5247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
316 | 315 | oveq2d 7446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
317 | | difssd 4146 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
318 | 221, 317 | ssfid 9298 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ Fin) |
319 | 1, 22, 222, 292, 272 | mulgnn0cld 19125 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
320 | 284, 319 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
321 | 1, 22, 222, 309, 272 | mulgnn0cld 19125 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
322 | 284, 321 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
323 | | eqid 2734 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
324 | | eqid 2734 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
325 | 1, 2, 6, 318, 320, 322, 323, 324 | gsummptfidmadd 19957 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))(+g‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
326 | 316, 325 | eqtrd 2774 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
327 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑋 ∈ 𝐼) |
328 | 65 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑑 Fn 𝐼) |
329 | | elrabi 3689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
330 | 329, 124 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 Fn 𝐼) |
331 | 330 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝑢 Fn 𝐼) |
332 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → 𝐼 ∈ V) |
333 | | eqidd 2735 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → (𝑑‘𝑋) = (𝑑‘𝑋)) |
334 | | eqidd 2735 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
335 | 328, 331,
332, 332, 72, 333, 334 | ofval 7707 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∧ 𝑋 ∈ 𝐼) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
336 | 327, 335 | mpdan 687 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑 ∘f − 𝑢)‘𝑋) = ((𝑑‘𝑋) − (𝑢‘𝑋))) |
337 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑢 → (𝑘‘𝑋) = (𝑢‘𝑋)) |
338 | 337 | eqeq1d 2736 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑢 → ((𝑘‘𝑋) = 0 ↔ (𝑢‘𝑋) = 0)) |
339 | 119, 338 | anbi12d 632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
340 | 339 | elrab 3694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
341 | 340 | simprbi 496 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
342 | 341 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → (𝑢‘𝑋) = 0) |
343 | 342 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑢‘𝑋) = 0) |
344 | 343 | oveq2d 7446 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) − (𝑢‘𝑋)) = ((𝑑‘𝑋) − 0)) |
345 | 30 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) ∈
ℕ0) |
346 | 345 | nn0cnd 12586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) ∈ ℂ) |
347 | 346 | subid1d 11606 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) − 0) = (𝑑‘𝑋)) |
348 | 336, 344,
347 | 3eqtrrd 2779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (𝑑‘𝑋) = ((𝑑 ∘f − 𝑢)‘𝑋)) |
349 | 348 | oveq1d 7445 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((𝑑‘𝑋) + 1) = (((𝑑 ∘f − 𝑢)‘𝑋) + 1)) |
350 | 349 | oveq1d 7445 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
351 | 350 | mpteq2dva 5247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
352 | 351 | oveq2d 7446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
353 | 326, 352 | oveq12d 7448 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
354 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp) |
355 | 106 | rabex 5344 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ V |
356 | 355 | difexi 5335 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ V |
357 | 356 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∈ V) |
358 | 320 | fmpttd 7134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})⟶(Base‘𝑅)) |
359 | | ovex 7463 |
. . . . . . . . . . . 12
⊢ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ V |
360 | 359, 323 | fnmpti 6711 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
361 | 360 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
362 | 361, 318,
113 | fndmfifsupp 9415 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
363 | 1, 104, 6, 357, 358, 362 | gsumcl 19947 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
364 | 322 | fmpttd 7134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})⟶(Base‘𝑅)) |
365 | | ovex 7463 |
. . . . . . . . . . . 12
⊢ ((((𝑑 ∘f −
𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ V |
366 | 365, 324 | fnmpti 6711 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
367 | 366 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
368 | 367, 318,
113 | fndmfifsupp 9415 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
369 | 1, 104, 6, 357, 364, 368 | gsumcl 19947 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
370 | 106 | rabex 5344 |
. . . . . . . . . 10
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ V |
371 | 370 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ V) |
372 | 278 | sseli 3990 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
373 | 372, 321 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
374 | 373 | fmpttd 7134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}⟶(Base‘𝑅)) |
375 | | eqid 2734 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
376 | 365, 375 | fnmpti 6711 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} |
377 | 376 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) |
378 | 221, 279 | ssfid 9298 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ∈ Fin) |
379 | 377, 378,
113 | fndmfifsupp 9415 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
380 | 1, 104, 6, 371, 374, 379 | gsumcl 19947 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
381 | 1, 2, 354, 363, 369, 380 | grpassd 18975 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
382 | 283, 353,
381 | 3eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
383 | 219, 382 | oveq12d 7448 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
384 | 103, 115,
383 | 3eqtr3d 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
385 | | psdmul.m |
. . . . . 6
⊢ · =
(.r‘𝑆) |
386 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐹 ∈ 𝐵) |
387 | 41 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝐺 ∈ 𝐵) |
388 | 9, 10, 34, 385, 14, 386, 387, 19 | psrmulval 21981 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
389 | 388 | oveq2d 7446 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑑‘𝑋) + 1)(.g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
390 | 107 | difexi 5335 |
. . . . . . 7
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ V |
391 | 390 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ V) |
392 | | eldifi 4140 |
. . . . . . . 8
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
393 | 38, 123 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢:𝐼⟶ℕ0) |
394 | 393 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑢:𝐼⟶ℕ0) |
395 | 28 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → 𝑋 ∈ 𝐼) |
396 | 394, 395 | ffvelcdmd 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → (𝑢‘𝑋) ∈
ℕ0) |
397 | 1, 22, 25, 396, 50 | mulgnn0cld 19125 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
398 | 392, 397 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
399 | 398 | fmpttd 7134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))):({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})⟶(Base‘𝑅)) |
400 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
401 | 359, 400 | fnmpti 6711 |
. . . . . . . 8
⊢ (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
402 | 401 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
403 | | difssd 4146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
404 | 21, 403 | ssfid 9298 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∈ Fin) |
405 | 402, 404,
113 | fndmfifsupp 9415 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
406 | 1, 104, 6, 391, 399, 405 | gsumcl 19947 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) ∈ (Base‘𝑅)) |
407 | 1, 2, 354, 369, 380 | grpcld 18977 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) ∈ (Base‘𝑅)) |
408 | 1, 2, 354, 406, 363, 407 | grpassd 18975 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
409 | 384, 389,
408 | 3eqtr4d 2784 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))))) |
410 | 409 | mpteq2dva 5247 |
. 2
⊢ (𝜑 → (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
411 | 9, 10, 385, 4, 8, 41 | psrmulcl 21983 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
412 | 9, 10, 14, 28, 411 | psdval 22180 |
. 2
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑑‘𝑋) + 1)(.g‘𝑅)((𝐹 · 𝐺)‘(𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
413 | | psdmul.p |
. . . 4
⊢ + =
(+g‘𝑆) |
414 | 23 | grpmgmd 18991 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mgm) |
415 | 9, 10, 414, 28, 8 | psdcl 22182 |
. . . . 5
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
416 | 9, 10, 385, 4, 415, 41 | psrmulcl 21983 |
. . . 4
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∈ 𝐵) |
417 | 9, 10, 414, 28, 41 | psdcl 22182 |
. . . . 5
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵) |
418 | 9, 10, 385, 4, 8, 417 | psrmulcl 21983 |
. . . 4
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) ∈ 𝐵) |
419 | 9, 10, 2, 413, 416, 418 | psradd 21974 |
. . 3
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f
(+g‘𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))) |
420 | 9, 1, 14, 10, 416 | psrelbas 21971 |
. . . . 5
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
421 | 420 | ffnd 6737 |
. . . 4
⊢ (𝜑 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
422 | 9, 1, 14, 10, 418 | psrelbas 21971 |
. . . . 5
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
423 | 422 | ffnd 6737 |
. . . 4
⊢ (𝜑 → (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)) Fn {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
424 | 106 | a1i 11 |
. . . 4
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
425 | | inidm 4234 |
. . . 4
⊢ ({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∩ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
426 | 415 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
427 | 9, 10, 34, 385, 14, 426, 387, 7 | psrmulval 21981 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = (𝑅 Σg (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))))) |
428 | 355 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∈ V) |
429 | 4 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑅 ∈ Ring) |
430 | | elrabi 3689 |
. . . . . . . . 9
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
431 | 9, 1, 14, 10, 415 | psrelbas 21971 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
432 | 431 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹):{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
433 | 432 | ffvelcdmda 7103 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅)) |
434 | 430, 433 | sylan2 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) ∈ (Base‘𝑅)) |
435 | 42 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
436 | 14, 243 | psrbagconcl 21964 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
437 | 436 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
438 | | elrabi 3689 |
. . . . . . . . . 10
⊢ ((𝑑 ∘f −
𝑏) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑑 ∘f − 𝑏) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
439 | 437, 438 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑑 ∘f − 𝑏) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
440 | 435, 439 | ffvelcdmd 7104 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘(𝑑 ∘f − 𝑏)) ∈ (Base‘𝑅)) |
441 | 1, 34, 429, 434, 440 | ringcld 20276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) ∈ (Base‘𝑅)) |
442 | 441 | fmpttd 7134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))):{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}⟶(Base‘𝑅)) |
443 | | ovex 7463 |
. . . . . . . . 9
⊢
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) ∈ V |
444 | | eqid 2734 |
. . . . . . . . 9
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) = (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) |
445 | 443, 444 | fnmpti 6711 |
. . . . . . . 8
⊢ (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
446 | 445 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
447 | 446, 221,
113 | fndmfifsupp 9415 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) finSupp
(0g‘𝑅)) |
448 | | eqid 2734 |
. . . . . . 7
⊢ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
449 | | df-of 7696 |
. . . . . . . . . 10
⊢
∘f + = (𝑚
∈ V, 𝑛 ∈ V
↦ (𝑜 ∈ (dom
𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
450 | | vex 3481 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
451 | 450 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → 𝑢 ∈ V) |
452 | | ssv 4019 |
. . . . . . . . . . 11
⊢ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ V |
453 | 452 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ⊆ V) |
454 | | ssv 4019 |
. . . . . . . . . . 11
⊢ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V |
455 | 454 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ⊆ V) |
456 | 449, 451,
453, 455 | elimampo 7569 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
457 | 456 | biimpa 476 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
458 | | elrabi 3689 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
459 | 14 | psrbagf 21955 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑚:𝐼⟶ℕ0) |
460 | 459 | ffund 6740 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → Fun 𝑚) |
461 | 458, 460 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → Fun 𝑚) |
462 | 461 | funfnd 6598 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚 Fn dom 𝑚) |
463 | 462 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 Fn dom 𝑚) |
464 | | velsn 4646 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ 𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
465 | | funmpt 6605 |
. . . . . . . . . . . . . . . 16
⊢ Fun
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) |
466 | | funeq 6587 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (Fun 𝑛 ↔ Fun (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
467 | 465, 466 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → Fun 𝑛) |
468 | 467 | funfnd 6598 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → 𝑛 Fn dom 𝑛) |
469 | 464, 468 | sylbi 217 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 Fn dom 𝑛) |
470 | 469 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑛 Fn dom 𝑛) |
471 | | vex 3481 |
. . . . . . . . . . . . . 14
⊢ 𝑚 ∈ V |
472 | 471 | dmex 7931 |
. . . . . . . . . . . . 13
⊢ dom 𝑚 ∈ V |
473 | 472 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑚 ∈ V) |
474 | | vex 3481 |
. . . . . . . . . . . . . 14
⊢ 𝑛 ∈ V |
475 | 474 | dmex 7931 |
. . . . . . . . . . . . 13
⊢ dom 𝑛 ∈ V |
476 | 475 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → dom 𝑛 ∈ V) |
477 | | eqid 2734 |
. . . . . . . . . . . 12
⊢ (dom
𝑚 ∩ dom 𝑛) = (dom 𝑚 ∩ dom 𝑛) |
478 | | eqidd 2735 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑚) → (𝑚‘𝑜) = (𝑚‘𝑜)) |
479 | | eqidd 2735 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑜 ∈ dom 𝑛) → (𝑛‘𝑜) = (𝑛‘𝑜)) |
480 | 463, 470,
473, 476, 477, 478, 479 | offval 7705 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
481 | 480 | eqeq2d 2745 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
482 | | elsni 4647 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → 𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
483 | 482 | oveq2d 7446 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑚 ∘f + 𝑛) = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
484 | 483 | eqeq2d 2745 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
485 | 484 | ad2antll 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
486 | 13 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ V) |
487 | 458, 459 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑚:𝐼⟶ℕ0) |
488 | 487 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚:𝐼⟶ℕ0) |
489 | 131 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
490 | | nn0cn 12533 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 ∈ ℕ0
→ 𝑞 ∈
ℂ) |
491 | | nn0cn 12533 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℕ0
→ 𝑟 ∈
ℂ) |
492 | | nn0cn 12533 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ ℕ0
→ 𝑠 ∈
ℂ) |
493 | | addsubass 11515 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ ∧ 𝑠 ∈ ℂ) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
494 | 490, 491,
492, 493 | syl3an 1159 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℕ0
∧ 𝑟 ∈
ℕ0 ∧ 𝑠
∈ ℕ0) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
495 | 494 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ (𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0
∧ 𝑠 ∈
ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
496 | 486, 488,
489, 489, 495 | caofass 7735 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
497 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
498 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈
ℕ0) |
499 | 68, 76, 497, 498 | fvmptd3 7038 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
500 | 133, 133,
13, 13, 72, 499, 499 | offval 7705 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) |
501 | 500 | oveq2d 7446 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
502 | 501 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
503 | 237 | subidi 11577 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)) = 0 |
504 | 503 | mpteq2i 5252 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ 0) |
505 | | fconstmpt 5750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 × {0}) = (𝑖 ∈ 𝐼 ↦ 0) |
506 | 504, 505 | eqtr4i 2765 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))) = (𝐼 × {0}) |
507 | 506 | oveq2i 7441 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑚 ∘f + (𝐼 × {0})) |
508 | | 0zd 12622 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 0 ∈
ℤ) |
509 | 490 | addridd 11458 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 ∈ ℕ0
→ (𝑞 + 0) = 𝑞) |
510 | 509 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑞 ∈ ℕ0) → (𝑞 + 0) = 𝑞) |
511 | 486, 488,
508, 510 | caofid0r 7730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝐼 × {0})) = 𝑚) |
512 | 507, 511 | eqtrid 2786 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚) |
513 | 496, 502,
512 | 3eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚) |
514 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
515 | 513, 514 | eqeltrd 2838 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
516 | | oveq1 7437 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
517 | 516 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
518 | 515, 517 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
519 | 518 | adantrr 717 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
520 | 485, 519 | sylbid 240 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
521 | 481, 520 | sylbird 260 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
522 | 521 | rexlimdvva 3210 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
523 | 457, 522 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
524 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
525 | 13 | mptexd 7243 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V) |
526 | | elsng 4644 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ V → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
527 | 525, 526 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ↔ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
528 | 68, 527 | mpbiri 258 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) |
529 | 528 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) |
530 | 449 | mpofun 7556 |
. . . . . . . . 9
⊢ Fun
∘f + |
531 | 530 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → Fun
∘f + ) |
532 | | xpss 5704 |
. . . . . . . . 9
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ (V ×
V) |
533 | 472 | inex1 5322 |
. . . . . . . . . . . 12
⊢ (dom
𝑚 ∩ dom 𝑛) ∈ V |
534 | 533 | mptex 7242 |
. . . . . . . . . . 11
⊢ (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V |
535 | 534 | rgen2w 3063 |
. . . . . . . . . 10
⊢
∀𝑚 ∈ V
∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V |
536 | 449 | dmmpoga 8096 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈ V
∀𝑛 ∈ V (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ∈ V → dom ∘f +
= (V × V)) |
537 | 535, 536 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → dom
∘f + = (V × V)) |
538 | 532, 537 | sseqtrrid 4048 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ⊆ dom ∘f +
) |
539 | 524, 529,
531, 538 | elovimad 7480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) |
540 | 13 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝐼 ∈ V) |
541 | | elrabi 3689 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
542 | 14 | psrbagf 21955 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → 𝑣:𝐼⟶ℕ0) |
543 | 541, 542 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → 𝑣:𝐼⟶ℕ0) |
544 | 543 | ad2antll 729 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑣:𝐼⟶ℕ0) |
545 | 131 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
546 | 494 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ (𝑞 ∈ ℕ0 ∧ 𝑟 ∈ ℕ0
∧ 𝑠 ∈
ℕ0)) → ((𝑞 + 𝑟) − 𝑠) = (𝑞 + (𝑟 − 𝑠))) |
547 | 540, 544,
545, 545, 546 | caofass 7735 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑣 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
548 | 133 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
549 | 78 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
550 | 548, 548,
540, 540, 72, 549, 549 | offval 7705 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) |
551 | 550 | oveq2d 7446 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0))))) |
552 | 506 | oveq2i 7441 |
. . . . . . . . . . 11
⊢ (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = (𝑣 ∘f + (𝐼 × {0})) |
553 | | 0zd 12622 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 0 ∈
ℤ) |
554 | | nn0cn 12533 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℕ0
→ 𝑝 ∈
ℂ) |
555 | 554 | addridd 11458 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℕ0
→ (𝑝 + 0) = 𝑝) |
556 | 555 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝) |
557 | 540, 544,
553, 556 | caofid0r 7730 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + (𝐼 × {0})) = 𝑣) |
558 | 552, 557 | eqtrid 2786 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑣) |
559 | 547, 551,
558 | 3eqtrrd 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑣 = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
560 | | oveq1 7437 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
561 | 560 | eqeq2d 2745 |
. . . . . . . . 9
⊢ (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = ((𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
562 | 559, 561 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
563 | 16 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
564 | 14 | psrbagaddcl 21961 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
565 | 458, 563,
564 | syl2an2 686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
566 | 14 | psrbagf 21955 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
567 | 565, 566 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
568 | 567 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0) |
569 | | feq1 6716 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢:𝐼⟶ℕ0 ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))):𝐼⟶ℕ0)) |
570 | 568, 569 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢:𝐼⟶ℕ0)) |
571 | 485, 570 | sylbid 240 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → 𝑢:𝐼⟶ℕ0)) |
572 | 481, 571 | sylbird 260 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢:𝐼⟶ℕ0)) |
573 | 572 | rexlimdvva 3210 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢:𝐼⟶ℕ0)) |
574 | 457, 573 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℕ0) |
575 | 574 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢:𝐼⟶ℕ0) |
576 | 575 | ffvelcdmda 7103 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
577 | 576 | nn0cnd 12586 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
578 | 237 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
579 | 577, 578 | npcand 11621 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
580 | 579 | mpteq2dva 5247 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
581 | 575 | ffnd 6737 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 Fn 𝐼) |
582 | 581, 548,
540, 540, 72 | offn 7709 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
583 | | eqidd 2735 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
584 | 581, 548,
540, 540, 72, 583, 549 | ofval 7707 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
585 | 582, 548,
540, 540, 72, 584, 549 | offval 7705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)))) |
586 | 575 | feqmptd 6976 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
587 | 580, 585,
586 | 3eqtr4rd 2785 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
588 | | oveq1 7437 |
. . . . . . . . . 10
⊢ (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
589 | 588 | eqeq2d 2745 |
. . . . . . . . 9
⊢ (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
590 | 587, 589 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
591 | 562, 590 | impbid 212 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∧ 𝑣 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) → (𝑢 = (𝑣 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑣 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
592 | 448, 523,
539, 591 | f1o2d 7686 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))):( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))–1-1-onto→{𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
593 | 1, 104, 6, 428, 442, 447, 592 | gsumf1o 19948 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))))) = (𝑅 Σg ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
594 | 555 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑝 ∈ ℕ0) → (𝑝 + 0) = 𝑝) |
595 | 486, 488,
508, 594 | caofid0r 7730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝐼 × {0})) = 𝑚) |
596 | 507, 595 | eqtrid 2786 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑖 ∈ 𝐼 ↦ (if(𝑖 = 𝑋, 1, 0) − if(𝑖 = 𝑋, 1, 0)))) = 𝑚) |
597 | 496, 502,
596 | 3eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑚) |
598 | 597, 514 | eqeltrd 2838 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
599 | 598, 517 | syl5ibrcom 247 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
600 | 599 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
601 | 485, 600 | sylbid 240 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
602 | 481, 601 | sylbird 260 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
603 | 602 | rexlimdvva 3210 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) |
604 | 457, 603 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
605 | | eqidd 2735 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
606 | | eqidd 2735 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) = (𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))))) |
607 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏) = ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
608 | | oveq2 7438 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑑 ∘f − 𝑏) = (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
609 | 608 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝐺‘(𝑑 ∘f − 𝑏)) = (𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
610 | 607, 609 | oveq12d 7448 |
. . . . . . . . 9
⊢ (𝑏 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏))) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) |
611 | 604, 605,
606, 610 | fmptco 7148 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))))) |
612 | 28 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑋 ∈ 𝐼) |
613 | 8 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹 ∈ 𝐵) |
614 | | elrabi 3689 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
615 | 604, 614 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
616 | 9, 10, 14, 612, 613, 615 | psdcoef 22181 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g‘𝑅)(𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
617 | 574 | ffnd 6737 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 Fn 𝐼) |
618 | 131 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
619 | 618 | ffnd 6737 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
620 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐼 ∈ V) |
621 | | eqidd 2735 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → (𝑢‘𝑋) = (𝑢‘𝑋)) |
622 | | iftrue 4536 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1, 0) = 1) |
623 | | 1ex 11254 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
V |
624 | 622, 68, 623 | fvmpt 7015 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ 𝐼 → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
625 | 624 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
626 | 617, 619,
620, 620, 72, 621, 625 | ofval 7707 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑋 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢‘𝑋) − 1)) |
627 | 612, 626 | mpdan 687 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑢‘𝑋) − 1)) |
628 | 627 | oveq1d 7445 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (((𝑢‘𝑋) − 1) + 1)) |
629 | | nn0sscn 12528 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 ⊆ ℂ |
630 | 629 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ℕ0
⊆ ℂ) |
631 | 574, 630 | fssd 6753 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢:𝐼⟶ℂ) |
632 | 631, 612 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈ ℂ) |
633 | | 1cnd 11253 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 1 ∈
ℂ) |
634 | 632, 633 | npcand 11621 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢‘𝑋) − 1) + 1) = (𝑢‘𝑋)) |
635 | 628, 634 | eqtrd 2774 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1) = (𝑢‘𝑋)) |
636 | 617, 619,
620, 620, 72 | offn 7709 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
637 | | eqidd 2735 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
638 | 78 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
639 | 617, 619,
620, 620, 72, 637, 638 | ofval 7707 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
640 | 574 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
641 | 640 | nn0cnd 12586 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
642 | 237 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
643 | 641, 642 | npcand 11621 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
644 | 620, 636,
619, 617, 639, 638, 643 | offveq 7722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 𝑢) |
645 | 644 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐹‘𝑢)) |
646 | 635, 645 | oveq12d 7448 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) + 1)(.g‘𝑅)(𝐹‘((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))) |
647 | 616, 646 | eqtrd 2774 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))) |
648 | 26 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑:𝐼⟶ℕ0) |
649 | 648 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
650 | 649 | nn0cnd 12586 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℂ) |
651 | 650, 641,
642 | subsub3d 11647 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) = (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖))) |
652 | 651 | mpteq2dva 5247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)))) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
653 | 65 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑑 Fn 𝐼) |
654 | | eqidd 2735 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
655 | 653, 636,
620, 620, 72, 654, 639 | offval 7705 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝑖 ∈ 𝐼 ↦ ((𝑑‘𝑖) − ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))))) |
656 | 653, 619,
620, 620, 72 | offn 7709 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
657 | 653, 619,
620, 620, 72, 654, 638 | ofval 7707 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
658 | 656, 617,
620, 620, 72, 657, 637 | offval 7705 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) = (𝑖 ∈ 𝐼 ↦ (((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) − (𝑢‘𝑖)))) |
659 | 652, 655,
658 | 3eqtr4d 2784 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) |
660 | 659 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) |
661 | 647, 660 | oveq12d 7448 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
662 | 4 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Ring) |
663 | 574, 612 | ffvelcdmd 7104 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈
ℕ0) |
664 | 663 | nn0zd 12636 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑢‘𝑋) ∈ ℤ) |
665 | 36 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐹:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
666 | | simpllr 776 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
667 | 16 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
668 | | simprl 771 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
669 | | eqid 2734 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} = {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
670 | 14, 243, 669 | psrbagleadd1 21965 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
671 | 666, 667,
668, 670 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
672 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
673 | 671, 672 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
674 | 485, 673 | sylbid 240 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑚 ∘f + 𝑛) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
675 | 481, 674 | sylbird 260 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) ∧ (𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
676 | 675 | rexlimdvva 3210 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))})) |
677 | 457, 676 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
678 | | elrabi 3689 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
679 | 677, 678 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
680 | 665, 679 | ffvelcdmd 7104 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐹‘𝑢) ∈ (Base‘𝑅)) |
681 | 42 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝐺:{ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}⟶(Base‘𝑅)) |
682 | 19 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
683 | 14, 669 | psrbagconcl 21964 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑢 ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
684 | 682, 677,
683 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
685 | | elrabi 3689 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {𝑙 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑙 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
686 | 684, 685 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
687 | 681, 686 | ffvelcdmd 7104 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅)) |
688 | 1, 22, 34 | mulgass2 20322 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ((𝑢‘𝑋) ∈ ℤ ∧ (𝐹‘𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅))) → (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
689 | 662, 664,
680, 687, 688 | syl13anc 1371 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((𝑢‘𝑋)(.g‘𝑅)(𝐹‘𝑢))(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
690 | 661, 689 | eqtrd 2774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
691 | 690 | mpteq2dva 5247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘(𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))(.r‘𝑅)(𝐺‘(𝑑 ∘f − (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
692 | 611, 691 | eqtrd 2774 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
693 | 692 | oveq2d 7446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = (𝑅 Σg (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
694 | | snex 5441 |
. . . . . . . . . 10
⊢ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ V |
695 | 355, 694 | xpex 7771 |
. . . . . . . . 9
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∈ V |
696 | 695 | funimaex 6655 |
. . . . . . . 8
⊢ (Fun
∘f + → ( ∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V) |
697 | 530, 696 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ∈ V) |
698 | 24 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → 𝑅 ∈ Mnd) |
699 | 1, 34, 662, 680, 687 | ringcld 20276 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) ∈ (Base‘𝑅)) |
700 | 1, 22, 698, 663, 699 | mulgnn0cld 19125 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))) → ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) ∈ (Base‘𝑅)) |
701 | | eqid 2734 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
702 | 359, 701 | fnmpti 6711 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} |
703 | 702 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) Fn {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
704 | 703, 21, 113 | fndmfifsupp 9415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
705 | 462 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑚 Fn dom 𝑚) |
706 | 469 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → 𝑛 Fn dom 𝑛) |
707 | 472 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑚 ∈ V) |
708 | 475 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → dom 𝑛 ∈ V) |
709 | | eqidd 2735 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑚) → (𝑚‘𝑜) = (𝑚‘𝑜)) |
710 | | eqidd 2735 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ∧ 𝑜 ∈ dom 𝑛) → (𝑛‘𝑜) = (𝑛‘𝑜)) |
711 | 705, 706,
707, 708, 477, 709, 710 | offval 7705 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑚 ∘f + 𝑛) = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜)))) |
712 | 711 | eqeq2d 2745 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
713 | 712 | rexbidva 3174 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ ∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))))) |
714 | 16 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
715 | | oveq2 7438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑚 ∘f + 𝑛) = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
716 | 715 | eqeq2d 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) → (𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
717 | 716 | rexsng 4680 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} →
(∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
718 | 714, 717 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑚 ∘f + 𝑛) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
719 | 713, 718 | bitr3d 281 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ↔ 𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
720 | 719 | rexbidva 3174 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}∃𝑛 ∈ {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}𝑢 = (𝑜 ∈ (dom 𝑚 ∩ dom 𝑛) ↦ ((𝑚‘𝑜) + (𝑛‘𝑜))) ↔ ∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
721 | | breq1 5150 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
722 | | breq1 5150 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ 𝑑 ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑)) |
723 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘‘𝑋) = ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋)) |
724 | 723 | eqeq1d 2736 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘‘𝑋) = 0 ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)) |
725 | 722, 724 | anbi12d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
726 | 725 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
727 | 721, 726 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)) ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)))) |
728 | 458, 714,
564 | syl2an2 686 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
729 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
730 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
731 | 14, 243, 44 | psrbagleadd1 21965 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
732 | 729, 714,
730, 731 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
733 | 721 | elrab 3694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ↔ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
734 | 733 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
735 | 732, 734 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
736 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑋 ∈ 𝐼) |
737 | 487 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚:𝐼⟶ℕ0) |
738 | 737 | ffnd 6737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝑚 Fn 𝐼) |
739 | 133 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
740 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐼 ∈ V) |
741 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → (𝑚‘𝑋) = (𝑚‘𝑋)) |
742 | 624 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑋) = 1) |
743 | 738, 739,
740, 740, 72, 741, 742 | ofval 7707 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∧ 𝑋 ∈ 𝐼) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚‘𝑋) + 1)) |
744 | 736, 743 | mpdan 687 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = ((𝑚‘𝑋) + 1)) |
745 | 737, 736 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚‘𝑋) ∈
ℕ0) |
746 | | nn0p1nn 12562 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚‘𝑋) ∈ ℕ0 → ((𝑚‘𝑋) + 1) ∈ ℕ) |
747 | 745, 746 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚‘𝑋) + 1) ∈ ℕ) |
748 | 744, 747 | eqeltrd 2838 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ∈ ℕ) |
749 | 748 | nnne0d 12313 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) ≠ 0) |
750 | 749 | neneqd 2942 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0) |
751 | 750 | intnand 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0)) |
752 | 735, 751 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ∧ ((𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑋) = 0))) |
753 | 727, 728,
752 | elrabd 3696 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) |
754 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} ↔ (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
755 | 753, 754 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
756 | | breq1 5150 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑘 ∘r ≤ 𝑑 ↔ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑)) |
757 | | elrabi 3689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
758 | 757 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
759 | 131 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0) |
760 | 757, 123 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢:𝐼⟶ℕ0) |
761 | 760 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢:𝐼⟶ℕ0) |
762 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑋 ∈ 𝐼) |
763 | 761, 762 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ∈
ℕ0) |
764 | 339 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑘 = 𝑢 → (¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0) ↔ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
765 | 118, 764 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑘 = 𝑢 → ((𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)) ↔ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)))) |
766 | 765 | elrab 3694 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} ↔ (𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)))) |
767 | 766 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0))) |
768 | 767 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
769 | 768 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
770 | 769 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
771 | 757, 124 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → 𝑢 Fn 𝐼) |
772 | 771 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 Fn 𝐼) |
773 | 772 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 Fn 𝐼) |
774 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
775 | 88 | ffnd 6737 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
776 | 774, 775 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
777 | 776 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
778 | 13 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝐼 ∈ V) |
779 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
780 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
781 | 773, 777,
778, 778, 72, 779, 780 | ofrfval 7706 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖))) |
782 | 770, 781 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
783 | 782 | r19.21bi 3248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
784 | 783 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑢‘𝑖) ≤ ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖)) |
785 | 65 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → 𝑑 Fn 𝐼) |
786 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
787 | 13 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) → 𝐼 ∈ V) |
788 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
789 | 78 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
790 | 785, 786,
787, 787, 72, 788, 789 | ofval 7707 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ≠ 𝑋) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
791 | 790 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
792 | 158 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → if(𝑖 = 𝑋, 1, 0) = 0) |
793 | 792 | oveq2d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)) = ((𝑑‘𝑖) + 0)) |
794 | 27 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑑:𝐼⟶ℕ0) |
795 | 794 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
796 | 795 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑑‘𝑖) ∈
ℕ0) |
797 | 796 | nn0cnd 12586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑑‘𝑖) ∈ ℂ) |
798 | 797 | addridd 11458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑‘𝑖) + 0) = (𝑑‘𝑖)) |
799 | 791, 793,
798 | 3eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = (𝑑‘𝑖)) |
800 | 784, 799 | breqtrd 5173 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 ≠ 𝑋) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
801 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢‘𝑋) = 0) |
802 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑑:𝐼⟶ℕ0) |
803 | 802, 762 | ffvelcdmd 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑑‘𝑋) ∈
ℕ0) |
804 | 803 | nn0ge0d 12587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 0 ≤ (𝑑‘𝑋)) |
805 | 804 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 0 ≤ (𝑑‘𝑋)) |
806 | 801, 805 | eqbrtrd 5169 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
807 | 806 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑋) ≤ (𝑑‘𝑋)) |
808 | 175, 800,
807 | pm2.61ne 3024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
809 | 808 | ralrimiva 3143 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖)) |
810 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑑 Fn 𝐼) |
811 | 810 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑑 Fn 𝐼) |
812 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
813 | 773, 811,
778, 778, 72, 779, 812 | ofrfval 7706 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → (𝑢 ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ (𝑑‘𝑖))) |
814 | 809, 813 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ (𝑢‘𝑋) = 0) → 𝑢 ∘r ≤ 𝑑) |
815 | 814 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢‘𝑋) = 0 → 𝑢 ∘r ≤ 𝑑)) |
816 | 767 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} → ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
817 | 816 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
818 | | imnan 399 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑢 ∘r ≤ 𝑑 → ¬ (𝑢‘𝑋) = 0) ↔ ¬ (𝑢 ∘r ≤ 𝑑 ∧ (𝑢‘𝑋) = 0)) |
819 | 817, 818 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘r ≤ 𝑑 → ¬ (𝑢‘𝑋) = 0)) |
820 | 819 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢‘𝑋) = 0 → ¬ 𝑢 ∘r ≤ 𝑑)) |
821 | 815, 820 | pm2.65d 196 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ¬ (𝑢‘𝑋) = 0) |
822 | 821 | neqned 2944 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ≠ 0) |
823 | 763, 822,
191 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢‘𝑋) ∈ ℕ) |
824 | 823 | nnge1d 12311 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 1 ≤ (𝑢‘𝑋)) |
825 | 824 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → 1 ≤ (𝑢‘𝑋)) |
826 | 173 | breq2d 5159 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑋 → (1 ≤ (𝑢‘𝑖) ↔ 1 ≤ (𝑢‘𝑋))) |
827 | 825, 826 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑖 = 𝑋 → 1 ≤ (𝑢‘𝑖))) |
828 | 827 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) ∧ 𝑖 = 𝑋) → 1 ≤ (𝑢‘𝑖)) |
829 | 761 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈
ℕ0) |
830 | 829 | nn0ge0d 12587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → 0 ≤ (𝑢‘𝑖)) |
831 | 830 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) ∧ ¬ 𝑖 = 𝑋) → 0 ≤ (𝑢‘𝑖)) |
832 | 828, 831 | ifpimpda 1080 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if-(𝑖 = 𝑋, 1 ≤ (𝑢‘𝑖), 0 ≤ (𝑢‘𝑖))) |
833 | | brif1 7529 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖) ↔ if-(𝑖 = 𝑋, 1 ≤ (𝑢‘𝑖), 0 ≤ (𝑢‘𝑖))) |
834 | 832, 833 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖)) |
835 | 834 | ralrimiva 3143 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖)) |
836 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) Fn 𝐼) |
837 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝐼 ∈ V) |
838 | 78 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))‘𝑖) = if(𝑖 = 𝑋, 1, 0)) |
839 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) = (𝑢‘𝑖)) |
840 | 836, 772,
837, 837, 72, 838, 839 | ofrfval 7706 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢 ↔ ∀𝑖 ∈ 𝐼 if(𝑖 = 𝑋, 1, 0) ≤ (𝑢‘𝑖))) |
841 | 835, 840 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢) |
842 | 14 | psrbagcon 21962 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)):𝐼⟶ℕ0 ∧ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∘r ≤ 𝑢) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑢)) |
843 | 758, 759,
841, 842 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧ (𝑢 ∘f −
(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑢)) |
844 | 843 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin}) |
845 | | eqidd 2735 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) = (𝑑‘𝑖)) |
846 | 810, 836,
837, 837, 72, 845, 838 | ofval 7707 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
847 | 772, 776,
837, 837, 72, 839, 846 | ofrfval 7706 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
848 | 769, 847 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
849 | 848 | r19.21bi 3248 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0))) |
850 | 829 | nn0red 12585 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℝ) |
851 | 60 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℝ) |
852 | 802 | ffvelcdmda 7103 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈
ℕ0) |
853 | 852 | nn0red 12585 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑑‘𝑖) ∈ ℝ) |
854 | 850, 851,
853 | lesubaddd 11857 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖) ↔ (𝑢‘𝑖) ≤ ((𝑑‘𝑖) + if(𝑖 = 𝑋, 1, 0)))) |
855 | 849, 854 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖)) |
856 | 855 | ralrimiva 3143 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ∀𝑖 ∈ 𝐼 ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖)) |
857 | 772, 836,
837, 837, 72 | offn 7709 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) Fn 𝐼) |
858 | 772, 836,
837, 837, 72, 839, 838 | ofval 7707 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))‘𝑖) = ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0))) |
859 | 857, 810,
837, 837, 72, 858, 845 | ofrfval 7706 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑 ↔ ∀𝑖 ∈ 𝐼 ((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) ≤ (𝑑‘𝑖))) |
860 | 856, 859 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘r ≤ 𝑑) |
861 | 756, 844,
860 | elrabd 3696 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) |
862 | 829 | nn0cnd 12586 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (𝑢‘𝑖) ∈ ℂ) |
863 | 237 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → if(𝑖 = 𝑋, 1, 0) ∈ ℂ) |
864 | 862, 863 | npcand 11621 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) ∧ 𝑖 ∈ 𝐼) → (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)) = (𝑢‘𝑖)) |
865 | 864 | mpteq2dva 5247 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
866 | 857, 836,
837, 837, 72, 858, 838 | offval 7705 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = (𝑖 ∈ 𝐼 ↦ (((𝑢‘𝑖) − if(𝑖 = 𝑋, 1, 0)) + if(𝑖 = 𝑋, 1, 0)))) |
867 | 761 | feqmptd 6976 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 = (𝑖 ∈ 𝐼 ↦ (𝑢‘𝑖))) |
868 | 865, 866,
867 | 3eqtr4rd 2785 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) → 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
869 | | oveq1 7437 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
870 | 869 | eqeq2d 2745 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) → (𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 = ((𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) |
871 | 755, 861,
868, 870 | rspceb2dv 3625 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(∃𝑚 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}𝑢 = (𝑚 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
872 | 456, 720,
871 | 3bitrd 305 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↔ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))})) |
873 | 872 | eqrdv 2732 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))}) |
874 | | difrab 4323 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) = {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∧ ¬ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0))} |
875 | 873, 874 | eqtr4di 2792 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
876 | | difssd 4146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
877 | 875, 876 | eqsstrd 4033 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))}) |
878 | 704, 877,
113 | fmptssfisupp 9431 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ ( ∘f +
“ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) finSupp
(0g‘𝑅)) |
879 | | difss 4145 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} |
880 | | disjdif 4477 |
. . . . . . . . . 10
⊢ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅ |
881 | | ssdisj 4465 |
. . . . . . . . . 10
⊢ ((({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ⊆ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∧ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅) |
882 | 879, 880,
881 | mp2an 692 |
. . . . . . . . 9
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑})) = ∅ |
883 | 882 | ineqcomi 4218 |
. . . . . . . 8
⊢ (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ∅ |
884 | 883 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∩ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ∅) |
885 | 279, 99 | psdmullem 22186 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) = ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)})) |
886 | 875, 885 | eqtr4d 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) = (({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ∪ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}))) |
887 | 1, 104, 2, 6, 697, 700, 878, 884, 886 | gsumsplit2 19961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ (
∘f + “ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
888 | 693, 887 | eqtrd 2774 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
((𝑏 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)‘𝑏)(.r‘𝑅)(𝐺‘(𝑑 ∘f − 𝑏)))) ∘ (𝑢 ∈ ( ∘f + “
({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} × {(𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) ↦ (𝑢 ∘f − (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
889 | 427, 593,
888 | 3eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) →
(((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺)‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
890 | 417 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺) ∈ 𝐵) |
891 | 9, 10, 34, 385, 14, 386, 890, 7 | psrmulval 21981 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)))))) |
892 | 41 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → 𝐺 ∈ 𝐵) |
893 | 9, 10, 14, 285, 892, 247 | psdcoef 22181 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))))) |
894 | 267 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) = (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))) |
895 | 894 | oveq2d 7446 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f − 𝑢) ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
896 | 893, 895 | eqtrd 2774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) |
897 | 896 | oveq2d 7446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))) = ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
898 | 309 | nn0zd 12636 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → (((𝑑 ∘f − 𝑢)‘𝑋) + 1) ∈ ℤ) |
899 | 1, 22, 34 | mulgass3 20369 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ ((((𝑑 ∘f −
𝑢)‘𝑋) + 1) ∈ ℤ ∧ (𝐹‘𝑢) ∈ (Base‘𝑅) ∧ (𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)) ∈ (Base‘𝑅))) → ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
900 | 224, 898,
228, 271, 899 | syl13anc 1371 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
901 | 897, 900 | eqtrd 2774 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) ∧ 𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) → ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))) = ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))) |
902 | 901 | mpteq2dva 5247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢)))) = (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) |
903 | 902 | oveq2d 7446 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((𝐹‘𝑢)(.r‘𝑅)((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)‘(𝑑 ∘f − 𝑢))))) = (𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))) |
904 | 1, 2, 6, 221, 321, 275, 282 | gsummptfidmsplit 19962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → (𝑅 Σg
(𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
905 | 891, 903,
904 | 3eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin}) → ((𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))‘𝑑) = ((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))) |
906 | 421, 423,
424, 424, 425, 889, 905 | offval 7705 |
. . 3
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) ∘f
(+g‘𝑅)(𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
907 | 419, 906 | eqtrd 2774 |
. 2
⊢ (𝜑 → (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺))) = (𝑑 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑅 Σg
(𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ (𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((𝑢‘𝑋)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))(+g‘𝑅)((𝑅 Σg (𝑢 ∈ ({𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑘 ∘r ≤ 𝑑} ∖ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)}) ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢))))))(+g‘𝑅)(𝑅 Σg (𝑢 ∈ {𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ (𝑘 ∘r ≤ 𝑑 ∧ (𝑘‘𝑋) = 0)} ↦ ((((𝑑 ∘f − 𝑢)‘𝑋) + 1)(.g‘𝑅)((𝐹‘𝑢)(.r‘𝑅)(𝐺‘((𝑑 ∘f + (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) ∘f − 𝑢)))))))))) |
908 | 410, 412,
907 | 3eqtr4d 2784 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝐹 · 𝐺)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) · 𝐺) + (𝐹 · (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐺)))) |