MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval3 Structured version   Visualization version   GIF version

Theorem offval3 7441
Description: General value of (𝐹𝑓 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offval3 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊   𝑥,𝑅

Proof of Theorem offval3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3414 . . 3 (𝐹𝑉𝐹 ∈ V)
21adantr 474 . 2 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
3 elex 3414 . . 3 (𝐺𝑊𝐺 ∈ V)
43adantl 475 . 2 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
5 dmexg 7377 . . . 4 (𝐹𝑉 → dom 𝐹 ∈ V)
6 inex1g 5040 . . . 4 (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V)
7 mptexg 6758 . . . 4 ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
85, 6, 73syl 18 . . 3 (𝐹𝑉 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
98adantr 474 . 2 ((𝐹𝑉𝐺𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
10 dmeq 5571 . . . . 5 (𝑎 = 𝐹 → dom 𝑎 = dom 𝐹)
11 dmeq 5571 . . . . 5 (𝑏 = 𝐺 → dom 𝑏 = dom 𝐺)
1210, 11ineqan12d 4039 . . . 4 ((𝑎 = 𝐹𝑏 = 𝐺) → (dom 𝑎 ∩ dom 𝑏) = (dom 𝐹 ∩ dom 𝐺))
13 fveq1 6447 . . . . 5 (𝑎 = 𝐹 → (𝑎𝑥) = (𝐹𝑥))
14 fveq1 6447 . . . . 5 (𝑏 = 𝐺 → (𝑏𝑥) = (𝐺𝑥))
1513, 14oveqan12d 6943 . . . 4 ((𝑎 = 𝐹𝑏 = 𝐺) → ((𝑎𝑥)𝑅(𝑏𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
1612, 15mpteq12dv 4971 . . 3 ((𝑎 = 𝐹𝑏 = 𝐺) → (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎𝑥)𝑅(𝑏𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
17 df-of 7176 . . 3 𝑓 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎𝑥)𝑅(𝑏𝑥))))
1816, 17ovmpt2ga 7069 . 2 ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
192, 4, 9, 18syl3anc 1439 1 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  cin 3791  cmpt 4967  dom cdm 5357  cfv 6137  (class class class)co 6924  𝑓 cof 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176
This theorem is referenced by:  offres  7442  ofco2  20666  dvsinax  41065  dvcosax  41079
  Copyright terms: Public domain W3C validator