| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offval3 | Structured version Visualization version GIF version | ||
| Description: General value of (𝐹 ∘f 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| offval3 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
| 3 | elex 3457 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
| 5 | dmexg 7834 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 6 | inex1g 5258 | . . . 4 ⊢ (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V) | |
| 7 | mptexg 7157 | . . . 4 ⊢ ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 10 | dmeq 5846 | . . . . 5 ⊢ (𝑎 = 𝐹 → dom 𝑎 = dom 𝐹) | |
| 11 | dmeq 5846 | . . . . 5 ⊢ (𝑏 = 𝐺 → dom 𝑏 = dom 𝐺) | |
| 12 | 10, 11 | ineqan12d 4173 | . . . 4 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → (dom 𝑎 ∩ dom 𝑏) = (dom 𝐹 ∩ dom 𝐺)) |
| 13 | fveq1 6821 | . . . . 5 ⊢ (𝑎 = 𝐹 → (𝑎‘𝑥) = (𝐹‘𝑥)) | |
| 14 | fveq1 6821 | . . . . 5 ⊢ (𝑏 = 𝐺 → (𝑏‘𝑥) = (𝐺‘𝑥)) | |
| 15 | 13, 14 | oveqan12d 7368 | . . . 4 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → ((𝑎‘𝑥)𝑅(𝑏‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 16 | 12, 15 | mpteq12dv 5179 | . . 3 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎‘𝑥)𝑅(𝑏‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 17 | df-of 7613 | . . 3 ⊢ ∘f 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎‘𝑥)𝑅(𝑏‘𝑥)))) | |
| 18 | 16, 17 | ovmpoga 7503 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 19 | 2, 4, 9, 18 | syl3anc 1373 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ↦ cmpt 5173 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 |
| This theorem is referenced by: offres 7918 offsplitfpar 8052 ofco2 22336 dvsinax 45894 dvcosax 45907 fdivval 48524 |
| Copyright terms: Public domain | W3C validator |