| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfof | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| nfof.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfof | ⊢ Ⅎ𝑥 ∘f 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-of 7679 | . 2 ⊢ ∘f 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
| 2 | nfcv 2897 | . . 3 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
| 4 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
| 5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 6 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
| 7 | 4, 5, 6 | nfov 7443 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
| 8 | 3, 7 | nfmpt 5229 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
| 9 | 2, 2, 8 | nfmpo 7497 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
| 10 | 1, 9 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑥 ∘f 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2882 Vcvv 3463 ∩ cin 3930 ↦ cmpt 5205 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ∘f cof 7677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-iota 6494 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |