![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfof | Structured version Visualization version GIF version |
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfof | ⊢ Ⅎ𝑥 ∘f 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-of 7674 | . 2 ⊢ ∘f 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
2 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑥V | |
3 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
4 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
6 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
7 | 4, 5, 6 | nfov 7442 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
8 | 3, 7 | nfmpt 5255 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
9 | 2, 2, 8 | nfmpo 7494 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
10 | 1, 9 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥 ∘f 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2882 Vcvv 3473 ∩ cin 3947 ↦ cmpt 5231 dom cdm 5676 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 ∘f cof 7672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-iota 6495 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |