| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfof | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| nfof.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfof | ⊢ Ⅎ𝑥 ∘f 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-of 7656 | . 2 ⊢ ∘f 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) | |
| 2 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
| 4 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
| 5 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 6 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
| 7 | 4, 5, 6 | nfov 7420 | . . . 4 ⊢ Ⅎ𝑥((𝑢‘𝑤)𝑅(𝑣‘𝑤)) |
| 8 | 3, 7 | nfmpt 5208 | . . 3 ⊢ Ⅎ𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤))) |
| 9 | 2, 2, 8 | nfmpo 7474 | . 2 ⊢ Ⅎ𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢‘𝑤)𝑅(𝑣‘𝑤)))) |
| 10 | 1, 9 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥 ∘f 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 Vcvv 3450 ∩ cin 3916 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ∘f cof 7654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-iota 6467 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |