MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfof Structured version   Visualization version   GIF version

Theorem nfof 7659
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfof 𝑥f 𝑅

Proof of Theorem nfof
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 7653 . 2 f 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
2 nfcv 2891 . . 3 𝑥V
3 nfcv 2891 . . . 4 𝑥(dom 𝑢 ∩ dom 𝑣)
4 nfcv 2891 . . . . 5 𝑥(𝑢𝑤)
5 nfof.1 . . . . 5 𝑥𝑅
6 nfcv 2891 . . . . 5 𝑥(𝑣𝑤)
74, 5, 6nfov 7417 . . . 4 𝑥((𝑢𝑤)𝑅(𝑣𝑤))
83, 7nfmpt 5205 . . 3 𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤)))
92, 2, 8nfmpo 7471 . 2 𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
101, 9nfcxfr 2889 1 𝑥f 𝑅
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  Vcvv 3447  cin 3913  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  cmpo 7389  f cof 7651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator