Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfof Structured version   Visualization version   GIF version

Theorem nfof 7279
 Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfof 𝑥𝑓 𝑅

Proof of Theorem nfof
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 7274 . 2 𝑓 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
2 nfcv 2951 . . 3 𝑥V
3 nfcv 2951 . . . 4 𝑥(dom 𝑢 ∩ dom 𝑣)
4 nfcv 2951 . . . . 5 𝑥(𝑢𝑤)
5 nfof.1 . . . . 5 𝑥𝑅
6 nfcv 2951 . . . . 5 𝑥(𝑣𝑤)
74, 5, 6nfov 7053 . . . 4 𝑥((𝑢𝑤)𝑅(𝑣𝑤))
83, 7nfmpt 5064 . . 3 𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤)))
92, 2, 8nfmpo 7101 . 2 𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
101, 9nfcxfr 2949 1 𝑥𝑓 𝑅
 Colors of variables: wff setvar class Syntax hints:  Ⅎwnfc 2935  Vcvv 3440   ∩ cin 3864   ↦ cmpt 5047  dom cdm 5450  ‘cfv 6232  (class class class)co 7023   ∈ cmpo 7025   ∘𝑓 cof 7272 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-iota 6196  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator