MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfof Structured version   Visualization version   GIF version

Theorem nfof 7616
Description: Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypothesis
Ref Expression
nfof.1 𝑥𝑅
Assertion
Ref Expression
nfof 𝑥f 𝑅

Proof of Theorem nfof
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 7610 . 2 f 𝑅 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
2 nfcv 2894 . . 3 𝑥V
3 nfcv 2894 . . . 4 𝑥(dom 𝑢 ∩ dom 𝑣)
4 nfcv 2894 . . . . 5 𝑥(𝑢𝑤)
5 nfof.1 . . . . 5 𝑥𝑅
6 nfcv 2894 . . . . 5 𝑥(𝑣𝑤)
74, 5, 6nfov 7376 . . . 4 𝑥((𝑢𝑤)𝑅(𝑣𝑤))
83, 7nfmpt 5189 . . 3 𝑥(𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤)))
92, 2, 8nfmpo 7428 . 2 𝑥(𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑤 ∈ (dom 𝑢 ∩ dom 𝑣) ↦ ((𝑢𝑤)𝑅(𝑣𝑤))))
101, 9nfcxfr 2892 1 𝑥f 𝑅
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879  Vcvv 3436  cin 3901  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator