MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-om Structured version   Visualization version   GIF version

Definition df-om 7685
Description: Define the class of natural numbers, which are all ordinal numbers that are less than every limit ordinal, i.e., all finite ordinals. Our definition is a variant of the Definition of N of [BellMachover] p. 471. See dfom2 7686 for an alternate definition. Later, when we assume the Axiom of Infinity, we show ω is a set in omex 9306, and ω can then be defined per dfom3 9310 (the smallest inductive set) and dfom4 9312.

Note: the natural numbers ω are a subset of the ordinal numbers df-on 6252. Later, when we define complex numbers, we will be able to also define a subset of the complex numbers (df-nn 11879) with analogous properties and operations, but they will be different sets. (Contributed by NM, 15-May-1994.)

Assertion
Ref Expression
df-om ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-om
StepHypRef Expression
1 com 7684 . 2 class ω
2 vy . . . . . . 7 setvar 𝑦
32cv 1542 . . . . . 6 class 𝑦
43wlim 6249 . . . . 5 wff Lim 𝑦
5 vx . . . . . 6 setvar 𝑥
65, 2wel 2113 . . . . 5 wff 𝑥𝑦
74, 6wi 4 . . . 4 wff (Lim 𝑦𝑥𝑦)
87, 2wal 1541 . . 3 wff 𝑦(Lim 𝑦𝑥𝑦)
9 con0 6248 . . 3 class On
108, 5, 9crab 3068 . 2 class {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
111, 10wceq 1543 1 wff ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfom2  7686  elom  7687  omsson  7688
  Copyright terms: Public domain W3C validator