MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom2 Structured version   Visualization version   GIF version

Theorem dfom2 7429
Description: An alternate definition of the set of natural numbers ω. Definition 7.28 of [TakeutiZaring] p. 42, who use the symbol KI for the inner class builder of non-limit ordinal numbers (see nlimon 7413). (Contributed by NM, 1-Nov-2004.)
Assertion
Ref Expression
dfom2 ω = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}}

Proof of Theorem dfom2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-om 7428 . 2 ω = {𝑥 ∈ On ∣ ∀𝑧(Lim 𝑧𝑥𝑧)}
2 onsssuc 6145 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧𝑥𝑧 ∈ suc 𝑥))
3 ontri1 6092 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧𝑥 ↔ ¬ 𝑥𝑧))
42, 3bitr3d 282 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥𝑧))
54ancoms 459 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥𝑧))
6 limeq 6070 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (Lim 𝑦 ↔ Lim 𝑧))
76notbid 319 . . . . . . . . . . 11 (𝑦 = 𝑧 → (¬ Lim 𝑦 ↔ ¬ Lim 𝑧))
87elrab 3613 . . . . . . . . . 10 (𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧))
98a1i 11 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧)))
105, 9imbi12d 346 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → ((𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
1110pm5.74da 800 . . . . . . 7 (𝑥 ∈ On → ((𝑧 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) ↔ (𝑧 ∈ On → (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))))
12 vex 3435 . . . . . . . . . . 11 𝑧 ∈ V
13 limelon 6121 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → 𝑧 ∈ On)
1412, 13mpan 686 . . . . . . . . . 10 (Lim 𝑧𝑧 ∈ On)
1514pm4.71ri 561 . . . . . . . . 9 (Lim 𝑧 ↔ (𝑧 ∈ On ∧ Lim 𝑧))
1615imbi1i 351 . . . . . . . 8 ((Lim 𝑧𝑥𝑧) ↔ ((𝑧 ∈ On ∧ Lim 𝑧) → 𝑥𝑧))
17 impexp 451 . . . . . . . 8 (((𝑧 ∈ On ∧ Lim 𝑧) → 𝑥𝑧) ↔ (𝑧 ∈ On → (Lim 𝑧𝑥𝑧)))
18 con34b 317 . . . . . . . . . 10 ((Lim 𝑧𝑥𝑧) ↔ (¬ 𝑥𝑧 → ¬ Lim 𝑧))
19 ibar 529 . . . . . . . . . . 11 (𝑧 ∈ On → (¬ Lim 𝑧 ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧)))
2019imbi2d 342 . . . . . . . . . 10 (𝑧 ∈ On → ((¬ 𝑥𝑧 → ¬ Lim 𝑧) ↔ (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
2118, 20syl5bb 284 . . . . . . . . 9 (𝑧 ∈ On → ((Lim 𝑧𝑥𝑧) ↔ (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
2221pm5.74i 272 . . . . . . . 8 ((𝑧 ∈ On → (Lim 𝑧𝑥𝑧)) ↔ (𝑧 ∈ On → (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
2316, 17, 223bitri 298 . . . . . . 7 ((Lim 𝑧𝑥𝑧) ↔ (𝑧 ∈ On → (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
2411, 23syl6rbbr 291 . . . . . 6 (𝑥 ∈ On → ((Lim 𝑧𝑥𝑧) ↔ (𝑧 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))))
25 impexp 451 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (𝑧 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
26 simpr 485 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ suc 𝑥)
27 suceloni 7375 . . . . . . . . . . 11 (𝑥 ∈ On → suc 𝑥 ∈ On)
28 onelon 6083 . . . . . . . . . . . 12 ((suc 𝑥 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ On)
2928ex 413 . . . . . . . . . . 11 (suc 𝑥 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ On))
3027, 29syl 17 . . . . . . . . . 10 (𝑥 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ On))
3130ancrd 552 . . . . . . . . 9 (𝑥 ∈ On → (𝑧 ∈ suc 𝑥 → (𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥)))
3226, 31impbid2 227 . . . . . . . 8 (𝑥 ∈ On → ((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) ↔ 𝑧 ∈ suc 𝑥))
3332imbi1d 343 . . . . . . 7 (𝑥 ∈ On → (((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
3425, 33syl5bbr 286 . . . . . 6 (𝑥 ∈ On → ((𝑧 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) ↔ (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
3524, 34bitrd 280 . . . . 5 (𝑥 ∈ On → ((Lim 𝑧𝑥𝑧) ↔ (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
3635albidv 1896 . . . 4 (𝑥 ∈ On → (∀𝑧(Lim 𝑧𝑥𝑧) ↔ ∀𝑧(𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
37 dfss2 3872 . . . 4 (suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ ∀𝑧(𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))
3836, 37syl6bbr 290 . . 3 (𝑥 ∈ On → (∀𝑧(Lim 𝑧𝑥𝑧) ↔ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))
3938rabbiia 3415 . 2 {𝑥 ∈ On ∣ ∀𝑧(Lim 𝑧𝑥𝑧)} = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}}
401, 39eqtri 2817 1 ω = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1518   = wceq 1520  wcel 2079  {crab 3107  Vcvv 3432  wss 3854  Oncon0 6058  Lim wlim 6059  suc csuc 6060  ωcom 7427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-tr 5058  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-om 7428
This theorem is referenced by:  omsson  7431
  Copyright terms: Public domain W3C validator