| Step | Hyp | Ref
| Expression |
| 1 | | df-om 7888 |
. 2
⊢ ω =
{𝑥 ∈ On ∣
∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧)} |
| 2 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 3 | | limelon 6448 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ Lim 𝑧) → 𝑧 ∈ On) |
| 4 | 2, 3 | mpan 690 |
. . . . . . . . . 10
⊢ (Lim
𝑧 → 𝑧 ∈ On) |
| 5 | 4 | pm4.71ri 560 |
. . . . . . . . 9
⊢ (Lim
𝑧 ↔ (𝑧 ∈ On ∧ Lim 𝑧)) |
| 6 | 5 | imbi1i 349 |
. . . . . . . 8
⊢ ((Lim
𝑧 → 𝑥 ∈ 𝑧) ↔ ((𝑧 ∈ On ∧ Lim 𝑧) → 𝑥 ∈ 𝑧)) |
| 7 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ Lim 𝑧) → 𝑥 ∈ 𝑧) ↔ (𝑧 ∈ On → (Lim 𝑧 → 𝑥 ∈ 𝑧))) |
| 8 | | con34b 316 |
. . . . . . . . . 10
⊢ ((Lim
𝑧 → 𝑥 ∈ 𝑧) ↔ (¬ 𝑥 ∈ 𝑧 → ¬ Lim 𝑧)) |
| 9 | | ibar 528 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ On → (¬ Lim
𝑧 ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧))) |
| 10 | 9 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑧 ∈ On → ((¬ 𝑥 ∈ 𝑧 → ¬ Lim 𝑧) ↔ (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 11 | 8, 10 | bitrid 283 |
. . . . . . . . 9
⊢ (𝑧 ∈ On → ((Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 12 | 11 | pm5.74i 271 |
. . . . . . . 8
⊢ ((𝑧 ∈ On → (Lim 𝑧 → 𝑥 ∈ 𝑧)) ↔ (𝑧 ∈ On → (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 13 | 6, 7, 12 | 3bitri 297 |
. . . . . . 7
⊢ ((Lim
𝑧 → 𝑥 ∈ 𝑧) ↔ (𝑧 ∈ On → (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 14 | | onsssuc 6474 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧 ⊆ 𝑥 ↔ 𝑧 ∈ suc 𝑥)) |
| 15 | | ontri1 6418 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑧)) |
| 16 | 14, 15 | bitr3d 281 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥 ∈ 𝑧)) |
| 17 | 16 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥 ∈ 𝑧)) |
| 18 | | limeq 6396 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (Lim 𝑦 ↔ Lim 𝑧)) |
| 19 | 18 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (¬ Lim 𝑦 ↔ ¬ Lim 𝑧)) |
| 20 | 19 | elrab 3692 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧)) |
| 21 | 20 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧))) |
| 22 | 17, 21 | imbi12d 344 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ 𝑧 ∈ On) → ((𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))) |
| 23 | 22 | pm5.74da 804 |
. . . . . . 7
⊢ (𝑥 ∈ On → ((𝑧 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) ↔ (𝑧 ∈ On → (¬ 𝑥 ∈ 𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))) |
| 24 | 13, 23 | bitr4id 290 |
. . . . . 6
⊢ (𝑥 ∈ On → ((Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ (𝑧 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))) |
| 25 | | impexp 450 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (𝑧 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 26 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ suc 𝑥) |
| 27 | | onsuc 7831 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) |
| 28 | | onelon 6409 |
. . . . . . . . . . . 12
⊢ ((suc
𝑥 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ On) |
| 29 | 28 | ex 412 |
. . . . . . . . . . 11
⊢ (suc
𝑥 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ On)) |
| 30 | 27, 29 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ On)) |
| 31 | 30 | ancrd 551 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (𝑧 ∈ suc 𝑥 → (𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥))) |
| 32 | 26, 31 | impbid2 226 |
. . . . . . . 8
⊢ (𝑥 ∈ On → ((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) ↔ 𝑧 ∈ suc 𝑥)) |
| 33 | 32 | imbi1d 341 |
. . . . . . 7
⊢ (𝑥 ∈ On → (((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 34 | 25, 33 | bitr3id 285 |
. . . . . 6
⊢ (𝑥 ∈ On → ((𝑧 ∈ On → (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) ↔ (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 35 | 24, 34 | bitrd 279 |
. . . . 5
⊢ (𝑥 ∈ On → ((Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ (𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 36 | 35 | albidv 1920 |
. . . 4
⊢ (𝑥 ∈ On → (∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ ∀𝑧(𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))) |
| 37 | | df-ss 3968 |
. . . 4
⊢ (suc
𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim
𝑦} ↔ ∀𝑧(𝑧 ∈ suc 𝑥 → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) |
| 38 | 36, 37 | bitr4di 289 |
. . 3
⊢ (𝑥 ∈ On → (∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧) ↔ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) |
| 39 | 38 | rabbiia 3440 |
. 2
⊢ {𝑥 ∈ On ∣ ∀𝑧(Lim 𝑧 → 𝑥 ∈ 𝑧)} = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}} |
| 40 | 1, 39 | eqtri 2765 |
1
⊢ ω =
{𝑥 ∈ On ∣ suc
𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim
𝑦}} |