MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom2 Structured version   Visualization version   GIF version

Theorem dfom2 7853
Description: An alternate definition of the set of natural numbers ω. Definition 7.28 of [TakeutiZaring] p. 42, who use the symbol KI for the restricted class abstraction of non-limit ordinal numbers (see nlimon 7836). (Contributed by NM, 1-Nov-2004.)
Assertion
Ref Expression
dfom2 ω = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}}

Proof of Theorem dfom2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-om 7852 . 2 ω = {𝑥 ∈ On ∣ ∀𝑧(Lim 𝑧𝑥𝑧)}
2 vex 3478 . . . . . . . . . . 11 𝑧 ∈ V
3 limelon 6425 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ Lim 𝑧) → 𝑧 ∈ On)
42, 3mpan 688 . . . . . . . . . 10 (Lim 𝑧𝑧 ∈ On)
54pm4.71ri 561 . . . . . . . . 9 (Lim 𝑧 ↔ (𝑧 ∈ On ∧ Lim 𝑧))
65imbi1i 349 . . . . . . . 8 ((Lim 𝑧𝑥𝑧) ↔ ((𝑧 ∈ On ∧ Lim 𝑧) → 𝑥𝑧))
7 impexp 451 . . . . . . . 8 (((𝑧 ∈ On ∧ Lim 𝑧) → 𝑥𝑧) ↔ (𝑧 ∈ On → (Lim 𝑧𝑥𝑧)))
8 con34b 315 . . . . . . . . . 10 ((Lim 𝑧𝑥𝑧) ↔ (¬ 𝑥𝑧 → ¬ Lim 𝑧))
9 ibar 529 . . . . . . . . . . 11 (𝑧 ∈ On → (¬ Lim 𝑧 ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧)))
109imbi2d 340 . . . . . . . . . 10 (𝑧 ∈ On → ((¬ 𝑥𝑧 → ¬ Lim 𝑧) ↔ (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
118, 10bitrid 282 . . . . . . . . 9 (𝑧 ∈ On → ((Lim 𝑧𝑥𝑧) ↔ (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
1211pm5.74i 270 . . . . . . . 8 ((𝑧 ∈ On → (Lim 𝑧𝑥𝑧)) ↔ (𝑧 ∈ On → (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
136, 7, 123bitri 296 . . . . . . 7 ((Lim 𝑧𝑥𝑧) ↔ (𝑧 ∈ On → (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
14 onsssuc 6451 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧𝑥𝑧 ∈ suc 𝑥))
15 ontri1 6395 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧𝑥 ↔ ¬ 𝑥𝑧))
1614, 15bitr3d 280 . . . . . . . . . 10 ((𝑧 ∈ On ∧ 𝑥 ∈ On) → (𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥𝑧))
1716ancoms 459 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑧 ∈ suc 𝑥 ↔ ¬ 𝑥𝑧))
18 limeq 6373 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (Lim 𝑦 ↔ Lim 𝑧))
1918notbid 317 . . . . . . . . . . 11 (𝑦 = 𝑧 → (¬ Lim 𝑦 ↔ ¬ Lim 𝑧))
2019elrab 3682 . . . . . . . . . 10 (𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧))
2120a1i 11 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → (𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ (𝑧 ∈ On ∧ ¬ Lim 𝑧)))
2217, 21imbi12d 344 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑧 ∈ On) → ((𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧))))
2322pm5.74da 802 . . . . . . 7 (𝑥 ∈ On → ((𝑧 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) ↔ (𝑧 ∈ On → (¬ 𝑥𝑧 → (𝑧 ∈ On ∧ ¬ Lim 𝑧)))))
2413, 23bitr4id 289 . . . . . 6 (𝑥 ∈ On → ((Lim 𝑧𝑥𝑧) ↔ (𝑧 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))))
25 impexp 451 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (𝑧 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
26 simpr 485 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ suc 𝑥)
27 onsuc 7795 . . . . . . . . . . 11 (𝑥 ∈ On → suc 𝑥 ∈ On)
28 onelon 6386 . . . . . . . . . . . 12 ((suc 𝑥 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ On)
2928ex 413 . . . . . . . . . . 11 (suc 𝑥 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ On))
3027, 29syl 17 . . . . . . . . . 10 (𝑥 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ On))
3130ancrd 552 . . . . . . . . 9 (𝑥 ∈ On → (𝑧 ∈ suc 𝑥 → (𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥)))
3226, 31impbid2 225 . . . . . . . 8 (𝑥 ∈ On → ((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) ↔ 𝑧 ∈ suc 𝑥))
3332imbi1d 341 . . . . . . 7 (𝑥 ∈ On → (((𝑧 ∈ On ∧ 𝑧 ∈ suc 𝑥) → 𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}) ↔ (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
3425, 33bitr3id 284 . . . . . 6 (𝑥 ∈ On → ((𝑧 ∈ On → (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})) ↔ (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
3524, 34bitrd 278 . . . . 5 (𝑥 ∈ On → ((Lim 𝑧𝑥𝑧) ↔ (𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
3635albidv 1923 . . . 4 (𝑥 ∈ On → (∀𝑧(Lim 𝑧𝑥𝑧) ↔ ∀𝑧(𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦})))
37 dfss2 3967 . . . 4 (suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦} ↔ ∀𝑧(𝑧 ∈ suc 𝑥𝑧 ∈ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))
3836, 37bitr4di 288 . . 3 (𝑥 ∈ On → (∀𝑧(Lim 𝑧𝑥𝑧) ↔ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}))
3938rabbiia 3436 . 2 {𝑥 ∈ On ∣ ∀𝑧(Lim 𝑧𝑥𝑧)} = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}}
401, 39eqtri 2760 1 ω = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  wss 3947  Oncon0 6361  Lim wlim 6362  suc csuc 6363  ωcom 7851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-om 7852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator