MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom4 Structured version   Visualization version   GIF version

Theorem dfom4 9539
Description: A simplification of df-om 7797 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.)
Assertion
Ref Expression
dfom4 ω = {𝑥 ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom4
StepHypRef Expression
1 elom3 9538 . 2 (𝑥 ∈ ω ↔ ∀𝑦(Lim 𝑦𝑥𝑦))
21eqabi 2866 1 ω = {𝑥 ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  {cab 2709  Lim wlim 6307  ωcom 7796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-om 7797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator