![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfom4 | Structured version Visualization version GIF version |
Description: A simplification of df-om 7895 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.) |
Ref | Expression |
---|---|
dfom4 | ⊢ ω = {𝑥 ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elom3 9695 | . 2 ⊢ (𝑥 ∈ ω ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) | |
2 | 1 | eqabi 2877 | 1 ⊢ ω = {𝑥 ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 {cab 2714 Lim wlim 6393 ωcom 7894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 ax-inf2 9688 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-om 7895 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |