Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfom4 | Structured version Visualization version GIF version |
Description: A simplification of df-om 7594 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.) |
Ref | Expression |
---|---|
dfom4 | ⊢ ω = {𝑥 ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elom3 9177 | . 2 ⊢ (𝑥 ∈ ω ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) | |
2 | 1 | abbi2i 2871 | 1 ⊢ ω = {𝑥 ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 = wceq 1542 {cab 2716 Lim wlim 6167 ωcom 7593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 ax-inf2 9170 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-tr 5134 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-om 7594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |