| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfom4 | Structured version Visualization version GIF version | ||
| Description: A simplification of df-om 7807 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.) |
| Ref | Expression |
|---|---|
| dfom4 | ⊢ ω = {𝑥 ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elom3 9563 | . 2 ⊢ (𝑥 ∈ ω ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) | |
| 2 | 1 | eqabi 2863 | 1 ⊢ ω = {𝑥 ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 {cab 2707 Lim wlim 6312 ωcom 7806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7807 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |