MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom4 Structured version   Visualization version   GIF version

Theorem dfom4 9643
Description: A simplification of df-om 7855 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.)
Assertion
Ref Expression
dfom4 ω = {𝑥 ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom4
StepHypRef Expression
1 elom3 9642 . 2 (𝑥 ∈ ω ↔ ∀𝑦(Lim 𝑦𝑥𝑦))
21eqabi 2869 1 ω = {𝑥 ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  {cab 2709  Lim wlim 6365  ωcom 7854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-om 7855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator