Home | Metamath
Proof Explorer Theorem List (p. 79 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ofmresex 7801 | Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) | ||
Syntax | c1st 7802 | Extend the definition of a class to include the first member an ordered pair function. |
class 1st | ||
Syntax | c2nd 7803 | Extend the definition of a class to include the second member an ordered pair function. |
class 2nd | ||
Definition | df-1st 7804 | Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 7812 proves that it does this. For example, (1st ‘〈3, 4〉) = 3. Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 6117 and op1stb 5380). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | ||
Definition | df-2nd 7805 | Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 7813 proves that it does this. For example, (2nd ‘〈3, 4〉) = 4. Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 6120 and op2ndb 6119). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | ||
Theorem | 1stval 7806 | The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (1st ‘𝐴) = ∪ dom {𝐴} | ||
Theorem | 2ndval 7807 | The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | ||
Theorem | 1stnpr 7808 | Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) | ||
Theorem | 2ndnpr 7809 | Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) | ||
Theorem | 1st0 7810 | The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
⊢ (1st ‘∅) = ∅ | ||
Theorem | 2nd0 7811 | The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
⊢ (2nd ‘∅) = ∅ | ||
Theorem | op1st 7812 | Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 | ||
Theorem | op2nd 7813 | Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 | ||
Theorem | op1std 7814 | Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) | ||
Theorem | op2ndd 7815 | Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) | ||
Theorem | op1stg 7816 | Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | ||
Theorem | op2ndg 7817 | Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | ||
Theorem | ot1stg 7818 | Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 7818, ot2ndg 7819, ot3rdg 7820.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | ||
Theorem | ot2ndg 7819 | Extract the second member of an ordered triple. (See ot1stg 7818 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | ||
Theorem | ot3rdg 7820 | Extract the third member of an ordered triple. (See ot1stg 7818 comment.) (Contributed by NM, 3-Apr-2015.) |
⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | ||
Theorem | 1stval2 7821 | Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) | ||
Theorem | 2ndval2 7822 | Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) | ||
Theorem | oteqimp 7823 | The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) | ||
Theorem | fo1st 7824 | The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ 1st :V–onto→V | ||
Theorem | fo2nd 7825 | The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ 2nd :V–onto→V | ||
Theorem | br1steqg 7826 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) | ||
Theorem | br2ndeqg 7827 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) | ||
Theorem | f1stres 7828 | Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 | ||
Theorem | f2ndres 7829 | Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | ||
Theorem | fo1stres 7830 | Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.) |
⊢ (𝐵 ≠ ∅ → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐴) | ||
Theorem | fo2ndres 7831 | Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.) |
⊢ (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐵) | ||
Theorem | 1st2val 7832* | Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.) |
⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴) | ||
Theorem | 2nd2val 7833* | Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.) |
⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦}‘𝐴) = (2nd ‘𝐴) | ||
Theorem | 1stcof 7834 | Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) | ||
Theorem | 2ndcof 7835 | Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) | ||
Theorem | xp1st 7836 | Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | ||
Theorem | xp2nd 7837 | Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) | ||
Theorem | elxp6 7838 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7743. (Contributed by NM, 9-Oct-2004.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
Theorem | elxp7 7839 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7743. (Contributed by NM, 19-Aug-2006.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
Theorem | eqopi 7840 | Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) | ||
Theorem | xp2 7841* | Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.) |
⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} | ||
Theorem | unielxp 7842 | The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ 𝐴 ∈ ∪ (𝐵 × 𝐶)) | ||
Theorem | 1st2nd2 7843 | Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
Theorem | 1st2ndb 7844 | Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.) |
⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
Theorem | xpopth 7845 | An ordered pair theorem for members of Cartesian products. (Contributed by NM, 20-Jun-2007.) |
⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) | ||
Theorem | eqop 7846 | Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
Theorem | eqop2 7847 | Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
Theorem | op1steq 7848* | Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) | ||
Theorem | opreuopreu 7849* | There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023.) |
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝜓 ↔ 𝜑)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜓)) | ||
Theorem | el2xptp 7850* | A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | ||
Theorem | el2xptp0 7851 | A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st ‘𝐴)) = 𝑋 ∧ (2nd ‘(1st ‘𝐴)) = 𝑌 ∧ (2nd ‘𝐴) = 𝑍)) ↔ 𝐴 = 〈𝑋, 𝑌, 𝑍〉)) | ||
Theorem | 2nd1st 7852 | Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) | ||
Theorem | 1st2nd 7853 | Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
Theorem | 1stdm 7854 | The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.) |
⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (1st ‘𝐴) ∈ dom 𝑅) | ||
Theorem | 2ndrn 7855 | The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | ||
Theorem | 1st2ndbr 7856 | Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) | ||
Theorem | releldm2 7857* | Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
⊢ (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥 ∈ 𝐴 (1st ‘𝑥) = 𝐵)) | ||
Theorem | reldm 7858* | An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) | ||
Theorem | releldmdifi 7859* | One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023.) |
⊢ ((Rel 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) | ||
Theorem | funfv1st2nd 7860 | The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) | ||
Theorem | funelss 7861 | If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023.) |
⊢ ((Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐴) → ((1st ‘𝑋) ∈ dom 𝐵 → 𝑋 ∈ 𝐵)) | ||
Theorem | funeldmdif 7862* | Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023.) |
⊢ ((Fun 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) | ||
Theorem | sbcopeq1a 7863 | Equality theorem for substitution of a class for an ordered pair (analogue of sbceq1a 3722 that avoids the existential quantifiers of copsexg 5399). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) | ||
Theorem | csbopeq1a 7864 | Equality theorem for substitution of a class 𝐴 for an ordered pair 〈𝑥, 𝑦〉 in 𝐵 (analogue of csbeq1a 3842). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) | ||
Theorem | dfopab2 7865* | A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st ‘𝑧) / 𝑥][(2nd ‘𝑧) / 𝑦]𝜑} | ||
Theorem | dfoprab3s 7866* | A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} | ||
Theorem | dfoprab3 7867* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} | ||
Theorem | dfoprab4 7868* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} | ||
Theorem | dfoprab4f 7869* | Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 20-Dec-2008.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)} | ||
Theorem | opabex2 7870* | Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) | ||
Theorem | opabn1stprc 7871* | An ordered-pair class abstraction which does not depend on the first abstraction variable is a proper class. There must be, however, at least one set which satisfies the restricting wff. (Contributed by AV, 27-Dec-2020.) |
⊢ (∃𝑦𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜑} ∉ V) | ||
Theorem | opiota 7872* | The property of a uniquely specified ordered pair. The proof uses properties of the ℩ description binder. (Contributed by Mario Carneiro, 21-May-2015.) |
⊢ 𝐼 = (℩𝑧∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) & ⊢ 𝑋 = (1st ‘𝐼) & ⊢ 𝑌 = (2nd ‘𝐼) & ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐷 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃!𝑧∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝜒) ↔ (𝐶 = 𝑋 ∧ 𝐷 = 𝑌))) | ||
Theorem | cnvoprab 7873* | The converse of a class abstraction of nested ordered pairs. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof shortened by Thierry Arnoux, 20-Feb-2022.) |
⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜑)) & ⊢ (𝜓 → 𝑎 ∈ (V × V)) ⇒ ⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑧, 𝑎〉 ∣ 𝜓} | ||
Theorem | dfxp3 7874* | Define the Cartesian product of three classes. Compare df-xp 5586. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) |
⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} | ||
Theorem | elopabi 7875* | A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) | ||
Theorem | eloprabi 7876* | A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.) |
⊢ (𝑥 = (1st ‘(1st ‘𝐴)) → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = (2nd ‘(1st ‘𝐴)) → (𝜓 ↔ 𝜒)) & ⊢ (𝑧 = (2nd ‘𝐴) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝐴 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} → 𝜃) | ||
Theorem | mpomptsx 7877* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | ||
Theorem | mpompts 7878* | Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.) |
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd ‘𝑧) / 𝑦⦌𝐶) | ||
Theorem | dmmpossx 7879* | The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | ||
Theorem | fmpox 7880* | Functionality, domain and codomain of a class given by the maps-to notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⟶𝐷) | ||
Theorem | fmpo 7881* | Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) | ||
Theorem | fnmpo 7882* | Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → 𝐹 Fn (𝐴 × 𝐵)) | ||
Theorem | fnmpoi 7883* | Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ 𝐹 Fn (𝐴 × 𝐵) | ||
Theorem | dmmpo 7884* | Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ 𝐶 ∈ V ⇒ ⊢ dom 𝐹 = (𝐴 × 𝐵) | ||
Theorem | ovmpoelrn 7885* | An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.) |
⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑀 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) ∈ 𝑀) | ||
Theorem | dmmpoga 7886* | Domain of an operation given by the maps-to notation, closed form of dmmpo 7884. (Contributed by Alexander van der Vekens, 10-Feb-2019.) (Proof shortened by Lammen, 29-May-2024.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
Theorem | dmmpogaOLD 7887* | Obsolete version of dmmpoga 7886 as of 29-May-2024. (Contributed by Alexander van der Vekens, 10-Feb-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
Theorem | dmmpog 7888* | Domain of an operation given by the maps-to notation, closed form of dmmpo 7884. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐶 ∈ 𝑉 → dom 𝐹 = (𝐴 × 𝐵)) | ||
Theorem | mpoexxg 7889* | Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑆) → 𝐹 ∈ V) | ||
Theorem | mpoexg 7890* | Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝐹 ∈ V) | ||
Theorem | mpoexga 7891* | If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) | ||
Theorem | mpoexw 7892* | Weak version of mpoex 7893 that holds without ax-rep 5205. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
Theorem | mpoex 7893* | If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V | ||
Theorem | mptmpoopabbrd 7894* | The operation value of a function value of a collection of ordered pairs of elements related in two ways. (Contributed by Alexander van Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) & ⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ 𝜓} ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑓(𝐷‘𝐺)ℎ) → 𝜓) & ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝜏 ↔ 𝜃)) & ⊢ (𝑔 = 𝐺 → (𝜒 ↔ 𝜏)) & ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝜒 ∧ 𝑓(𝐷‘𝑔)ℎ)})) ⇒ ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝜃 ∧ 𝑓(𝐷‘𝐺)ℎ)}) | ||
Theorem | mptmpoopabovd 7895* | The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ (𝐴‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (𝐵‘𝐺)) & ⊢ (𝜑 → {〈𝑓, ℎ〉 ∣ 𝜓} ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑓(𝐷‘𝐺)ℎ) → 𝜓) & ⊢ 𝑀 = (𝑔 ∈ V ↦ (𝑎 ∈ (𝐴‘𝑔), 𝑏 ∈ (𝐵‘𝑔) ↦ {〈𝑓, ℎ〉 ∣ (𝑓(𝑎(𝐶‘𝑔)𝑏)ℎ ∧ 𝑓(𝐷‘𝑔)ℎ)})) ⇒ ⊢ (𝜑 → (𝑋(𝑀‘𝐺)𝑌) = {〈𝑓, ℎ〉 ∣ (𝑓(𝑋(𝐶‘𝐺)𝑌)ℎ ∧ 𝑓(𝐷‘𝐺)ℎ)}) | ||
Theorem | el2mpocsbcl 7896* | If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.) |
⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐶 ∧ 𝑇 ∈ ⦋𝑋 / 𝑥⦌⦋𝑌 / 𝑦⦌𝐷)))) | ||
Theorem | el2mpocl 7897* | If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. Using implicit substitution. (Contributed by AV, 21-May-2021.) |
⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐸)) & ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐶 = 𝐹 ∧ 𝐷 = 𝐺)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝐶 ∈ 𝑈 ∧ 𝐷 ∈ 𝑉) → (𝑊 ∈ (𝑆(𝑋𝑂𝑌)𝑇) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐹 ∧ 𝑇 ∈ 𝐺)))) | ||
Theorem | fnmpoovd 7898* | A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.) |
⊢ (𝜑 → 𝑀 Fn (𝐴 × 𝐵)) & ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐷 = 𝐶) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) → 𝐷 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐵 (𝑖𝑀𝑗) = 𝐷)) | ||
Theorem | offval22 7899* | The function operation expressed as a mapping, variation of offval2 7531. (Contributed by SO, 15-Jul-2018.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐶𝑅𝐷))) | ||
Theorem | brovpreldm 7900 | If a binary relation holds for the result of an operation, the operands are in the domain of the operation. (Contributed by AV, 31-Dec-2020.) |
⊢ (𝐷(𝐵𝐴𝐶)𝐸 → 〈𝐵, 𝐶〉 ∈ dom 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |