Home | Metamath
Proof Explorer Theorem List (p. 79 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cofunex2g 7801 | Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) | ||
Theorem | fnexALT 7802 | Alternate proof of fnex 7102, derived using the Axiom of Replacement in the form of funimaexg 6527. This version uses ax-pow 5289 and ax-un 7597, whereas fnex 7102 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) | ||
Theorem | funexw 7803 | Weak version of funex 7104 that holds without ax-rep 5210. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) | ||
Theorem | mptexw 7804* | Weak version of mptex 7108 that holds without ax-rep 5210. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | ||
Theorem | funrnex 7805 | If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 7104. (Contributed by NM, 11-Nov-1995.) |
⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) | ||
Theorem | zfrep6 7806* | A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 5224 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 5210. (Contributed by NM, 10-Oct-2003.) |
⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) | ||
Theorem | fornex 7807 | If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | ||
Theorem | f1dmex 7808 | If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5210. (Contributed by NM, 4-Sep-2004.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
Theorem | f1ovv 7809 | The range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.) |
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | ||
Theorem | fvclex 7810* | Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
⊢ 𝐹 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V | ||
Theorem | fvresex 7811* | Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V | ||
Theorem | abrexexg 7812* | Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5218, axrep6 5217, ax-rep 5210. See also abrexex2g 7816. There are partial converses under additional conditions, see for instance abnexg 7615. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2138, ax-11 2155, ax-12 2172, ax-pr 5353, ax-un 7597 and shorten proof. (Revised by SN, 11-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
Theorem | abrexexgOLD 7813* |
Obsolete version of abrexexg 7812 as of 11-Dec-2024. EDITORIAL: Comment
kept since the line of equivalences to ax-rep 5210 is different.
Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path mptexg 7106, funex 7104, fnex 7102, resfunexg 7100, and funimaexg 6527. See also abrexex2g 7816. There are partial converses under additional conditions, see for instance abnexg 7615. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
Theorem | abrexex 7814* | Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7812. See also abrexex2 7821. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V | ||
Theorem | iunexg 7815* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
Theorem | abrexex2g 7816* | Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | ||
Theorem | opabex3d 7817* | Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 9-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
Theorem | opabex3rd 7818* | Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023.) (Revised by AV, 9-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → {𝑥 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
Theorem | opabex3 7819* | Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∣ 𝜑} ∈ V) ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
Theorem | iunex 7820* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V | ||
Theorem | abrexex2 7821* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7814. (Contributed by NM, 12-Sep-2004.) |
⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V | ||
Theorem | abexssex 7822* | Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V | ||
Theorem | abexex 7823* | A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
⊢ 𝐴 ∈ V & ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V | ||
Theorem | f1oweALT 7824* | Alternate proof of f1owe 7233, more direct since not using the isomorphism predicate, but requiring ax-un 7597. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
Theorem | wemoiso 7825* | Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 9878. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
Theorem | wemoiso2 7826* | Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
Theorem | oprabexd 7827* | Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by AV, 9-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) & ⊢ (𝜑 → 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) | ||
Theorem | oprabex 7828* | Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜑) & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V | ||
Theorem | oprabex3 7829* | Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.) |
⊢ 𝐻 ∈ V & ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} ⇒ ⊢ 𝐹 ∈ V | ||
Theorem | oprabrexex2 7830* | Existence of an existentially restricted operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
⊢ 𝐴 ∈ V & ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ∈ V ⇒ ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑤 ∈ 𝐴 𝜑} ∈ V | ||
Theorem | ab2rexex 7831* | Existence of a class abstraction of existentially restricted sets. Variables 𝑥 and 𝑦 are normally free-variable parameters in the class expression substituted for 𝐶, which can be thought of as 𝐶(𝑥, 𝑦). See comments for abrexex 7814. (Contributed by NM, 20-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ∈ V | ||
Theorem | ab2rexex2 7832* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥, 𝑦, and 𝑧. Compare abrexex2 7821. (Contributed by NM, 20-Sep-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ {𝑧 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑} ∈ V | ||
Theorem | xpexgALT 7833 | Alternate proof of xpexg 7609 requiring Replacement (ax-rep 5210) but not Power Set (ax-pow 5289). (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | ||
Theorem | offval3 7834* | General value of (𝐹 ∘f 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) | ||
Theorem | offres 7835 | Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) ↾ 𝐷) = ((𝐹 ↾ 𝐷) ∘f 𝑅(𝐺 ↾ 𝐷))) | ||
Theorem | ofmres 7836* | Equivalent expressions for a restriction of the function operation map. Unlike ∘f 𝑅 which is a proper class, ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) can be a set by ofmresex 7837, allowing it to be used as a function or structure argument. By ofmresval 7558, the restricted operation map values are the same as the original values, allowing theorems for ∘f 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.) |
⊢ ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓 ∈ 𝐴, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘f 𝑅𝑔)) | ||
Theorem | ofmresex 7837 | Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ∘f 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) | ||
Syntax | c1st 7838 | Extend the definition of a class to include the first member an ordered pair function. |
class 1st | ||
Syntax | c2nd 7839 | Extend the definition of a class to include the second member an ordered pair function. |
class 2nd | ||
Definition | df-1st 7840 | Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 7848 proves that it does this. For example, (1st ‘〈3, 4〉) = 3. Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 6133 and op1stb 5387). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) | ||
Definition | df-2nd 7841 | Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 7849 proves that it does this. For example, (2nd ‘〈3, 4〉) = 4. Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 6136 and op2ndb 6135). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.) |
⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | ||
Theorem | 1stval 7842 | The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (1st ‘𝐴) = ∪ dom {𝐴} | ||
Theorem | 2ndval 7843 | The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | ||
Theorem | 1stnpr 7844 | Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ (¬ 𝐴 ∈ (V × V) → (1st ‘𝐴) = ∅) | ||
Theorem | 2ndnpr 7845 | Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) | ||
Theorem | 1st0 7846 | The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
⊢ (1st ‘∅) = ∅ | ||
Theorem | 2nd0 7847 | The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.) |
⊢ (2nd ‘∅) = ∅ | ||
Theorem | op1st 7848 | Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (1st ‘〈𝐴, 𝐵〉) = 𝐴 | ||
Theorem | op2nd 7849 | Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 | ||
Theorem | op1std 7850 | Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (1st ‘𝐶) = 𝐴) | ||
Theorem | op2ndd 7851 | Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 = 〈𝐴, 𝐵〉 → (2nd ‘𝐶) = 𝐵) | ||
Theorem | op1stg 7852 | Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | ||
Theorem | op2ndg 7853 | Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | ||
Theorem | ot1stg 7854 | Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 7854, ot2ndg 7855, ot3rdg 7856.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (1st ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐴) | ||
Theorem | ot2ndg 7855 | Extract the second member of an ordered triple. (See ot1stg 7854 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (2nd ‘(1st ‘〈𝐴, 𝐵, 𝐶〉)) = 𝐵) | ||
Theorem | ot3rdg 7856 | Extract the third member of an ordered triple. (See ot1stg 7854 comment.) (Contributed by NM, 3-Apr-2015.) |
⊢ (𝐶 ∈ 𝑉 → (2nd ‘〈𝐴, 𝐵, 𝐶〉) = 𝐶) | ||
Theorem | 1stval2 7857 | Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) | ||
Theorem | 2ndval2 7858 | Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) | ||
Theorem | oteqimp 7859 | The components of an ordered triple. (Contributed by Alexander van der Vekens, 2-Mar-2018.) |
⊢ (𝑇 = 〈𝐴, 𝐵, 𝐶〉 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ((1st ‘(1st ‘𝑇)) = 𝐴 ∧ (2nd ‘(1st ‘𝑇)) = 𝐵 ∧ (2nd ‘𝑇) = 𝐶))) | ||
Theorem | fo1st 7860 | The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ 1st :V–onto→V | ||
Theorem | fo2nd 7861 | The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ 2nd :V–onto→V | ||
Theorem | br1steqg 7862 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴)) | ||
Theorem | br2ndeqg 7863 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 2-Jul-2020.) Revised to remove sethood hypothesis on 𝐶. (Revised by Peter Mazsa, 17-Jan-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵)) | ||
Theorem | f1stres 7864 | Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 | ||
Theorem | f2ndres 7865 | Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.) |
⊢ (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 | ||
Theorem | fo1stres 7866 | Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.) |
⊢ (𝐵 ≠ ∅ → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐴) | ||
Theorem | fo2ndres 7867 | Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.) |
⊢ (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto→𝐵) | ||
Theorem | 1st2val 7868* | Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.) |
⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥}‘𝐴) = (1st ‘𝐴) | ||
Theorem | 2nd2val 7869* | Value of an alternate definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.) |
⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑦}‘𝐴) = (2nd ‘𝐴) | ||
Theorem | 1stcof 7870 | Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) | ||
Theorem | 2ndcof 7871 | Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) | ||
Theorem | xp1st 7872 | Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → (1st ‘𝐴) ∈ 𝐵) | ||
Theorem | xp2nd 7873 | Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → (2nd ‘𝐴) ∈ 𝐶) | ||
Theorem | elxp6 7874 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7778. (Contributed by NM, 9-Oct-2004.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
Theorem | elxp7 7875 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7778. (Contributed by NM, 19-Aug-2006.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | ||
Theorem | eqopi 7876 | Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) | ||
Theorem | xp2 7877* | Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.) |
⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} | ||
Theorem | unielxp 7878 | The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ 𝐴 ∈ ∪ (𝐵 × 𝐶)) | ||
Theorem | 1st2nd2 7879 | Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
Theorem | 1st2ndb 7880 | Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.) |
⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
Theorem | xpopth 7881 | An ordered pair theorem for members of Cartesian products. (Contributed by NM, 20-Jun-2007.) |
⊢ ((𝐴 ∈ (𝐶 × 𝐷) ∧ 𝐵 ∈ (𝑅 × 𝑆)) → (((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) ↔ 𝐴 = 𝐵)) | ||
Theorem | eqop 7882 | Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
Theorem | eqop2 7883 | Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴 = 〈𝐵, 𝐶〉 ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) | ||
Theorem | op1steq 7884* | Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) | ||
Theorem | opreuopreu 7885* | There is a unique ordered pair fulfilling a wff iff its components fulfil a corresponding wff. (Contributed by AV, 2-Jul-2023.) |
⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝜓 ↔ 𝜑)) ⇒ ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝜓)) | ||
Theorem | el2xptp 7886* | A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
⊢ (𝐴 ∈ ((𝐵 × 𝐶) × 𝐷) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝐴 = 〈𝑥, 𝑦, 𝑧〉) | ||
Theorem | el2xptp0 7887 | A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → ((𝐴 ∈ ((𝑈 × 𝑉) × 𝑊) ∧ ((1st ‘(1st ‘𝐴)) = 𝑋 ∧ (2nd ‘(1st ‘𝐴)) = 𝑌 ∧ (2nd ‘𝐴) = 𝑍)) ↔ 𝐴 = 〈𝑋, 𝑌, 𝑍〉)) | ||
Theorem | 2nd1st 7888 | Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∪ ◡{𝐴} = 〈(2nd ‘𝐴), (1st ‘𝐴)〉) | ||
Theorem | 1st2nd 7889 | Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | ||
Theorem | 1stdm 7890 | The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.) |
⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (1st ‘𝐴) ∈ dom 𝑅) | ||
Theorem | 2ndrn 7891 | The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | ||
Theorem | 1st2ndbr 7892 | Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.) |
⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → (1st ‘𝐴)𝐵(2nd ‘𝐴)) | ||
Theorem | releldm2 7893* | Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
⊢ (Rel 𝐴 → (𝐵 ∈ dom 𝐴 ↔ ∃𝑥 ∈ 𝐴 (1st ‘𝑥) = 𝐵)) | ||
Theorem | reldm 7894* | An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) | ||
Theorem | releldmdifi 7895* | One way of expressing membership in the difference of domains of two nested relations. (Contributed by AV, 26-Oct-2023.) |
⊢ ((Rel 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) | ||
Theorem | funfv1st2nd 7896 | The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) | ||
Theorem | funelss 7897 | If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023.) |
⊢ ((Fun 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐴) → ((1st ‘𝑋) ∈ dom 𝐵 → 𝑋 ∈ 𝐵)) | ||
Theorem | funeldmdif 7898* | Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023.) |
⊢ ((Fun 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (dom 𝐴 ∖ dom 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∖ 𝐵)(1st ‘𝑥) = 𝐶)) | ||
Theorem | sbcopeq1a 7899 | Equality theorem for substitution of a class for an ordered pair (analogue of sbceq1a 3728 that avoids the existential quantifiers of copsexg 5406). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ([(1st ‘𝐴) / 𝑥][(2nd ‘𝐴) / 𝑦]𝜑 ↔ 𝜑)) | ||
Theorem | csbopeq1a 7900 | Equality theorem for substitution of a class 𝐴 for an ordered pair 〈𝑥, 𝑦〉 in 𝐵 (analogue of csbeq1a 3847). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |