Home | Metamath
Proof Explorer Theorem List (p. 79 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29646) |
Hilbert Space Explorer
(29647-31169) |
Users' Mathboxes
(31170-46948) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nnord 7801 | A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
⊢ (𝐴 ∈ ω → Ord 𝐴) | ||
Theorem | trom 7802 | The class of finite ordinals ω is a transitive class. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Tr ω | ||
Theorem | ordom 7803 | The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Ord ω | ||
Theorem | elnn 7804 | A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) | ||
Theorem | omon 7805 | The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.) |
⊢ (ω ∈ On ∨ ω = On) | ||
Theorem | omelon2 7806 | Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
⊢ (ω ∈ V → ω ∈ On) | ||
Theorem | nnlim 7807 | A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.) |
⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) | ||
Theorem | omssnlim 7808 | The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} | ||
Theorem | limom 7809 | Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
⊢ Lim ω | ||
Theorem | peano2b 7810 | A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | ||
Theorem | nnsuc 7811* | A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | ||
Theorem | omsucne 7812 | A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) | ||
Theorem | ssnlim 7813* | An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) |
⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω) | ||
Theorem | omsinds 7814* | Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ ω → 𝜒) | ||
Theorem | omsindsOLD 7815* | Obsolete version of omsinds 7814 as of 16-Oct-2024. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ ω → 𝜒) | ||
Theorem | peano1 7816 | Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7816 through peano5 7821 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7663. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ ∅ ∈ ω | ||
Theorem | peano1OLD 7817 | Obsolete version of peano1 7816 as of 29-Nov-2024. (Contributed by NM, 15-May-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∅ ∈ ω | ||
Theorem | peano2 7818 | The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | ||
Theorem | peano3 7819 | The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) | ||
Theorem | peano4 7820 | Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | peano5 7821* | The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 7830. (Contributed by NM, 18-Feb-2004.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 3-Oct-2024.) |
⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
Theorem | peano5OLD 7822* | Obsolete version of peano5 7821 as of 3-Oct-2024. (Contributed by NM, 18-Feb-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
Theorem | nn0suc 7823* | A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998.) |
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | ||
Theorem | find 7824* | The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Wolf Lammen, 28-May-2024.) |
⊢ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) ⇒ ⊢ 𝐴 = ω | ||
Theorem | findOLD 7825* | Obsolete version of find 7824 as of 28-May-2024. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) ⇒ ⊢ 𝐴 = ω | ||
Theorem | finds 7826* | Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ω → 𝜏) | ||
Theorem | findsg 7827* | Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. The basis of this version is an arbitrary natural number 𝐵 instead of zero. (Contributed by NM, 16-Sep-1995.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝐵 ∈ ω → 𝜓) & ⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → 𝜏) | ||
Theorem | finds2 7828* | Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝜏 → 𝜓) & ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) ⇒ ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) | ||
Theorem | finds1 7829* | Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) ⇒ ⊢ (𝑥 ∈ ω → 𝜑) | ||
Theorem | findes 7830 | Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. See tfindes 7790 for the transfinite version. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
⊢ [∅ / 𝑥]𝜑 & ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ⇒ ⊢ (𝑥 ∈ ω → 𝜑) | ||
Theorem | dmexg 7831 | The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | ||
Theorem | rnexg 7832 | The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | ||
Theorem | dmexd 7833 | The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 ∈ V) | ||
Theorem | fndmexd 7834 | If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 Fn 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ V) | ||
Theorem | dmfex 7835 | If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) | ||
Theorem | fndmexb 7836 | The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024.) |
⊢ (𝐹 Fn 𝐴 → (𝐴 ∈ V ↔ 𝐹 ∈ V)) | ||
Theorem | fdmexb 7837 | The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024.) |
⊢ (𝐹:𝐴⟶𝐵 → (𝐴 ∈ V ↔ 𝐹 ∈ V)) | ||
Theorem | dmfexALT 7838 | Alternate proof of dmfex 7835: shorter but using ax-rep 5241. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 23-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) | ||
Theorem | dmex 7839 | The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
⊢ 𝐴 ∈ V ⇒ ⊢ dom 𝐴 ∈ V | ||
Theorem | rnex 7840 | The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ran 𝐴 ∈ V | ||
Theorem | iprc 7841 | The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 22530. (Contributed by NM, 1-Jan-2007.) |
⊢ ¬ I ∈ V | ||
Theorem | resiexg 7842 | The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7160). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) | ||
Theorem | imaexg 7843 | The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | ||
Theorem | imaex 7844 | The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 “ 𝐵) ∈ V | ||
Theorem | exse2 7845 | Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) |
⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) | ||
Theorem | xpexr 7846 | If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.) |
⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) | ||
Theorem | xpexr2 7847 | If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.) |
⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | xpexcnv 7848 | A condition where the converse of xpex 7678 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
⊢ ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V) | ||
Theorem | soex 7849 | If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → 𝐴 ∈ V) | ||
Theorem | elxp4 7850 | Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp5 7851, elxp6 7946, and elxp7 7947. (Contributed by NM, 17-Feb-2004.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨∪ dom {𝐴}, ∪ ran {𝐴}⟩ ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | ||
Theorem | elxp5 7851 | Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 7850 when the double intersection does not create class existence problems (caused by int0 4922). (Contributed by NM, 1-Aug-2004.) |
⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨∩ ∩ 𝐴, ∪ ran {𝐴}⟩ ∧ (∩ ∩ 𝐴 ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | ||
Theorem | cnvexg 7852 | The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.) |
⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | ||
Theorem | cnvex 7853 | The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 19-Dec-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ◡𝐴 ∈ V | ||
Theorem | relcnvexb 7854 | A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007.) |
⊢ (Rel 𝑅 → (𝑅 ∈ V ↔ ◡𝑅 ∈ V)) | ||
Theorem | f1oexrnex 7855 | If the range of a 1-1 onto function is a set, the function itself is a set. (Contributed by AV, 2-Jun-2019.) |
⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ V) | ||
Theorem | f1oexbi 7856* | There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.) |
⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) | ||
Theorem | coexg 7857 | The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∘ 𝐵) ∈ V) | ||
Theorem | coex 7858 | The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∘ 𝐵) ∈ V | ||
Theorem | funcnvuni 7859* | The union of a chain (with respect to inclusion) of single-rooted sets is single-rooted. (See funcnv 6566 for "single-rooted" definition.) (Contributed by NM, 11-Aug-2004.) |
⊢ (∀𝑓 ∈ 𝐴 (Fun ◡𝑓 ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → Fun ◡∪ 𝐴) | ||
Theorem | fun11uni 7860* | The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.) |
⊢ (∀𝑓 ∈ 𝐴 ((Fun 𝑓 ∧ Fun ◡𝑓) ∧ ∀𝑔 ∈ 𝐴 (𝑓 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑓)) → (Fun ∪ 𝐴 ∧ Fun ◡∪ 𝐴)) | ||
Theorem | fex2 7861 | A function with bounded domain and codomain is a set. This version of fex 7171 is proven without the Axiom of Replacement ax-rep 5241, but depends on ax-un 7663, which is not required for the proof of fex 7171. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) | ||
Theorem | fabexg 7862* | Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) |
⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
Theorem | fabex 7863* | Existence of a set of functions. (Contributed by NM, 3-Dec-2007.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V | ||
Theorem | f1oabexg 7864* | The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) |
⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) | ||
Theorem | fiunlem 7865* | Lemma for fiun 7866 and f1iun 7867. Formerly part of f1iun 7867. (Contributed by AV, 6-Oct-2023.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (((𝐵:𝐷⟶𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) | ||
Theorem | fiun 7866* | The union of a chain (with respect to inclusion) of functions is a function. Analogous to f1iun 7867. (Contributed by AV, 6-Oct-2023.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝐵:𝐷⟶𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆) | ||
Theorem | f1iun 7867* | The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.) (Proof shortened by AV, 5-Nov-2023.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷–1-1→𝑆) | ||
Theorem | fviunfun 7868* | The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023.) |
⊢ 𝑈 = ∪ 𝑖 ∈ 𝐼 (𝐹‘𝑖) ⇒ ⊢ ((Fun 𝑈 ∧ 𝐽 ∈ 𝐼 ∧ 𝑋 ∈ dom (𝐹‘𝐽)) → (𝑈‘𝑋) = ((𝐹‘𝐽)‘𝑋)) | ||
Theorem | ffoss 7869* | Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹:𝐴⟶𝐵 ↔ ∃𝑥(𝐹:𝐴–onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
Theorem | f11o 7870* | Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹:𝐴–1-1→𝐵 ↔ ∃𝑥(𝐹:𝐴–1-1-onto→𝑥 ∧ 𝑥 ⊆ 𝐵)) | ||
Theorem | resfunexgALT 7871 | Alternate proof of resfunexg 7160, shorter but requiring ax-pow 5319 and ax-un 7663. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) | ||
Theorem | cofunexg 7872 | Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∘ 𝐵) ∈ V) | ||
Theorem | cofunex2g 7873 | Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) | ||
Theorem | fnexALT 7874 | Alternate proof of fnex 7162, derived using the Axiom of Replacement in the form of funimaexg 6583. This version uses ax-pow 5319 and ax-un 7663, whereas fnex 7162 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐹 ∈ V) | ||
Theorem | funexw 7875 | Weak version of funex 7164 that holds without ax-rep 5241. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵 ∧ ran 𝐹 ∈ 𝐶) → 𝐹 ∈ V) | ||
Theorem | mptexw 7876* | Weak version of mptex 7168 that holds without ax-rep 5241. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V | ||
Theorem | funrnex 7877 | If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 7164. (Contributed by NM, 11-Nov-1995.) |
⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) | ||
Theorem | zfrep6 7878* | A version of the Axiom of Replacement. Normally 𝜑 would have free variables 𝑥 and 𝑦. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 5255 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 5241. (Contributed by NM, 10-Oct-2003.) |
⊢ (∀𝑥 ∈ 𝑧 ∃!𝑦𝜑 → ∃𝑤∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑤 𝜑) | ||
Theorem | focdmex 7879 | If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) | ||
Theorem | f1dmex 7880 | If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5241. (Contributed by NM, 4-Sep-2004.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
Theorem | f1ovv 7881 | The codomain/range of a 1-1 onto function is a set iff its domain is a set. (Contributed by AV, 21-Mar-2019.) |
⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | ||
Theorem | fvclex 7882* | Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.) |
⊢ 𝐹 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = (𝐹‘𝑥)} ∈ V | ||
Theorem | fvresex 7883* | Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 𝑦 = ((𝐹 ↾ 𝐴)‘𝑥)} ∈ V | ||
Theorem | abrexexg 7884* | Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5249, axrep6 5248, ax-rep 5241. See also abrexex2g 7888. There are partial converses under additional conditions, see for instance abnexg 7681. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2138, ax-11 2155, ax-12 2172, ax-pr 5383, ax-un 7663 and shorten proof. (Revised by SN, 11-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
Theorem | abrexexgOLD 7885* |
Obsolete version of abrexexg 7884 as of 11-Dec-2024. EDITORIAL: Comment
kept since the line of equivalences to ax-rep 5241 is different.
Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path mptexg 7166, funex 7164, fnex 7162, resfunexg 7160, and funimaexg 6583. See also abrexex2g 7888. There are partial converses under additional conditions, see for instance abnexg 7681. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | ||
Theorem | abrexex 7886* | Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg 7884. See also abrexex2 7893. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V | ||
Theorem | iunexg 7887* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵. (Contributed by NM, 23-Mar-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
Theorem | abrexex2g 7888* | Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) | ||
Theorem | opabex3d 7889* | Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 9-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
Theorem | opabex3rd 7890* | Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023.) (Revised by AV, 9-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → {𝑥 ∣ 𝜓} ∈ V) ⇒ ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} ∈ V) | ||
Theorem | opabex3 7891* | Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∣ 𝜑} ∈ V) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
Theorem | iunex 7892* | The existence of an indexed union. 𝑥 is normally a free-variable parameter in the class expression substituted for 𝐵, which can be read informally as 𝐵(𝑥). (Contributed by NM, 13-Oct-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V | ||
Theorem | abrexex2 7893* | Existence of an existentially restricted class abstraction. 𝜑 normally has free-variable parameters 𝑥 and 𝑦. See also abrexex 7886. (Contributed by NM, 12-Sep-2004.) |
⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V | ||
Theorem | abexssex 7894* | Existence of a class abstraction with an existentially quantified expression. Both 𝑥 and 𝑦 can be free in 𝜑. (Contributed by NM, 29-Jul-2006.) |
⊢ 𝐴 ∈ V & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V | ||
Theorem | abexex 7895* | A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.) |
⊢ 𝐴 ∈ V & ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ {𝑦 ∣ 𝜑} ∈ V ⇒ ⊢ {𝑦 ∣ ∃𝑥𝜑} ∈ V | ||
Theorem | f1oweALT 7896* | Alternate proof of f1owe 7293, more direct since not using the isomorphism predicate, but requiring ax-un 7663. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
Theorem | wemoiso 7897* | Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 9983. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
Theorem | wemoiso2 7898* | Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ (𝑆 We 𝐵 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
Theorem | oprabexd 7899* | Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by AV, 9-Aug-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑧𝜓) & ⊢ (𝜑 → 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) | ||
Theorem | oprabex 7900* | Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧𝜑) & ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)} ⇒ ⊢ 𝐹 ∈ V |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |