| Metamath
Proof Explorer Theorem List (p. 79 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ordsucsssuc 7801 | The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ suc 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | ordsucuniel 7802 | Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
| ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) | ||
| Theorem | ordsucun 7803 | The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → suc (𝐴 ∪ 𝐵) = (suc 𝐴 ∪ suc 𝐵)) | ||
| Theorem | ordunpr 7804 | The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∪ 𝐶) ∈ {𝐵, 𝐶}) | ||
| Theorem | ordunel 7805 | The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵 ∪ 𝐶) ∈ 𝐴) | ||
| Theorem | onsucuni 7806 | A class of ordinal numbers is a subclass of the successor of its union. Similar to Proposition 7.26 of [TakeutiZaring] p. 41. (Contributed by NM, 19-Sep-2003.) |
| ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | ||
| Theorem | ordsucuni 7807 | An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.) |
| ⊢ (Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴) | ||
| Theorem | orduniorsuc 7808 | An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | ||
| Theorem | unon 7809 | The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
| ⊢ ∪ On = On | ||
| Theorem | ordunisuc 7810 | An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | ||
| Theorem | orduniss2 7811* | The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005.) |
| ⊢ (Ord 𝐴 → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) | ||
| Theorem | onsucuni2 7812 | A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 = suc 𝐵) → suc ∪ 𝐴 = 𝐴) | ||
| Theorem | 0elsuc 7813 | The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995.) |
| ⊢ (Ord 𝐴 → ∅ ∈ suc 𝐴) | ||
| Theorem | limon 7814 | The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
| ⊢ Lim On | ||
| Theorem | onuniorsuc 7815 | An ordinal number is either its own union (if zero or a limit ordinal) or the successor of its union. (Contributed by NM, 13-Jun-1994.) Put in closed form. (Revised by BJ, 11-Jan-2025.) |
| ⊢ (𝐴 ∈ On → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | ||
| Theorem | onssi 7816 | An ordinal number is a subset of On. (Contributed by NM, 11-Aug-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ 𝐴 ⊆ On | ||
| Theorem | onsuci 7817 | The successor of an ordinal number is an ordinal number. Inference associated with onsuc 7790 and onsucb 7795. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ suc 𝐴 ∈ On | ||
| Theorem | onuniorsuciOLD 7818 | Obsolete version of onuniorsuc 7815 as of 11-Jan-2025. (Contributed by NM, 13-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴) | ||
| Theorem | onuninsuci 7819* | An ordinal is equal to its union if and only if it is not the successor of an ordinal. A closed-form generalization of this result is orduninsuc 7822. (Contributed by NM, 18-Feb-2004.) |
| ⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥) | ||
| Theorem | onsucssi 7820 | A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
| ⊢ 𝐴 ∈ On & ⊢ 𝐵 ∈ On ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) | ||
| Theorem | nlimsucg 7821 | A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) | ||
| Theorem | orduninsuc 7822* | An ordinal class is equal to its union if and only if it is not the successor of an ordinal. Closed-form generalization of onuninsuci 7819. (Contributed by NM, 18-Feb-2004.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | ||
| Theorem | ordunisuc2 7823* | An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.) |
| ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
| Theorem | ordzsl 7824* | An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of [Schloeder] p. 2. (Contributed by NM, 1-Oct-2003.) |
| ⊢ (Ord 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴)) | ||
| Theorem | onzsl 7825* | An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) | ||
| Theorem | dflim3 7826* | An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | ||
| Theorem | dflim4 7827* | An alternate definition of a limit ordinal. (Contributed by NM, 1-Feb-2005.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
| Theorem | limsuc 7828 | The successor of a member of a limit ordinal is also a member. (Contributed by NM, 3-Sep-2003.) |
| ⊢ (Lim 𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) | ||
| Theorem | limsssuc 7829 | A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (Lim 𝐴 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | nlimon 7830* | Two ways to express the class of non-limit ordinal numbers. Part of Definition 7.27 of [TakeutiZaring] p. 42, who use the symbol KI for this class. (Contributed by NM, 1-Nov-2004.) |
| ⊢ {𝑥 ∈ On ∣ (𝑥 = ∅ ∨ ∃𝑦 ∈ On 𝑥 = suc 𝑦)} = {𝑥 ∈ On ∣ ¬ Lim 𝑥} | ||
| Theorem | limuni3 7831* | The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 Lim 𝑥) → Lim ∪ 𝐴) | ||
| Theorem | tfi 7832* |
The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring]
p. 39. This principle states that if 𝐴 is a class of ordinal
numbers with the property that every ordinal number included in 𝐴
also belongs to 𝐴, then every ordinal number is in
𝐴.
See Theorem tfindes 7842 or tfinds 7839 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.) |
| ⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐴 = On) | ||
| Theorem | tfisg 7833* | A closed form of tfis 7834. (Contributed by Scott Fenton, 8-Jun-2011.) |
| ⊢ (∀𝑥 ∈ On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥 ∈ On 𝜑) | ||
| Theorem | tfis 7834* | Transfinite Induction Schema. If all ordinal numbers less than a given number 𝑥 have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.) |
| ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis2f 7835* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis2 7836* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 18-Aug-1994.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfis3 7837* | Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ On → 𝜒) | ||
| Theorem | tfisi 7838* | A transfinite induction scheme in "implicit" form where the induction is done on an object derived from the object of interest. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ On) & ⊢ ((𝜑 ∧ (𝑅 ∈ On ∧ 𝑅 ⊆ 𝑇) ∧ ∀𝑦(𝑆 ∈ 𝑅 → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | tfinds 7839* | Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. Theorem 1.19 of [Schloeder] p. 3. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ On → (𝜒 → 𝜃)) & ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑)) ⇒ ⊢ (𝐴 ∈ On → 𝜏) | ||
| Theorem | tfindsg 7840* | Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal 𝐵 instead of zero. Remark in [TakeutiZaring] p. 57. (Contributed by NM, 5-Mar-2004.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝐵 ∈ On → 𝜓) & ⊢ (((𝑦 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝑦) → (𝜒 → 𝜃)) & ⊢ (((Lim 𝑥 ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝑥) → (∀𝑦 ∈ 𝑥 (𝐵 ⊆ 𝑦 → 𝜒) → 𝜑)) ⇒ ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝐴) → 𝜏) | ||
| Theorem | tfindsg2 7841* | Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal suc 𝐵 instead of zero. (Contributed by NM, 5-Jan-2005.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) |
| ⊢ (𝑥 = suc 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝐵 ∈ On → 𝜓) & ⊢ ((𝑦 ∈ On ∧ 𝐵 ∈ 𝑦) → (𝜒 → 𝜃)) & ⊢ ((Lim 𝑥 ∧ 𝐵 ∈ 𝑥) → (∀𝑦 ∈ 𝑥 (𝐵 ∈ 𝑦 → 𝜒) → 𝜑)) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝜏) | ||
| Theorem | tfindes 7842* | Transfinite Induction with explicit substitution. The first hypothesis is the basis, the second is the induction step for successors, and the third is the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 5-Mar-2004.) |
| ⊢ [∅ / 𝑥]𝜑 & ⊢ (𝑥 ∈ On → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) & ⊢ (Lim 𝑦 → (∀𝑥 ∈ 𝑦 𝜑 → [𝑦 / 𝑥]𝜑)) ⇒ ⊢ (𝑥 ∈ On → 𝜑) | ||
| Theorem | tfinds2 7843* | Transfinite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last three are the basis and the induction hypotheses (for successor and limit ordinals respectively). Theorem Schema 4 of [Suppes] p. 197. The wff 𝜏 is an auxiliary antecedent to help shorten proofs using this theorem. (Contributed by NM, 4-Sep-2004.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝜏 → 𝜓) & ⊢ (𝑦 ∈ On → (𝜏 → (𝜒 → 𝜃))) & ⊢ (Lim 𝑥 → (𝜏 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) ⇒ ⊢ (𝑥 ∈ On → (𝜏 → 𝜑)) | ||
| Theorem | tfinds3 7844* | Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝜂 → 𝜓) & ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) & ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) ⇒ ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) | ||
| Syntax | com 7845 | Extend class notation to include the class of natural numbers. |
| class ω | ||
| Definition | df-om 7846* |
Define the class of natural numbers, which are all ordinal numbers that
are less than every limit ordinal, i.e., all finite ordinals. Our
definition is a variant of the Definition of N of [BellMachover] p. 471.
See dfom2 7847 for an alternate definition. Later, when we
assume the
Axiom of Infinity, we show ω is a set in
omex 9603, and ω can
then be defined per dfom3 9607 (the smallest inductive set) and dfom4 9609.
Note: the natural numbers ω are a subset of the ordinal numbers df-on 6339. Later, when we define complex numbers, we will be able to also define a subset of the complex numbers (df-nn 12194) with analogous properties and operations, but they will be different sets. (Contributed by NM, 15-May-1994.) |
| ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | ||
| Theorem | dfom2 7847 | An alternate definition of the set of natural numbers ω. Definition 7.28 of [TakeutiZaring] p. 42, who use the symbol KI for the restricted class abstraction of non-limit ordinal numbers (see nlimon 7830). (Contributed by NM, 1-Nov-2004.) |
| ⊢ ω = {𝑥 ∈ On ∣ suc 𝑥 ⊆ {𝑦 ∈ On ∣ ¬ Lim 𝑦}} | ||
| Theorem | elom 7848* | Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 9608. (Contributed by NM, 15-May-1994.) |
| ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) | ||
| Theorem | omsson 7849 | Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ω ⊆ On | ||
| Theorem | limomss 7850 | The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) |
| ⊢ (Lim 𝐴 → ω ⊆ 𝐴) | ||
| Theorem | nnon 7851 | A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | ||
| Theorem | nnoni 7852 | A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.) |
| ⊢ 𝐴 ∈ ω ⇒ ⊢ 𝐴 ∈ On | ||
| Theorem | nnord 7853 | A natural number is ordinal. (Contributed by NM, 17-Oct-1995.) |
| ⊢ (𝐴 ∈ ω → Ord 𝐴) | ||
| Theorem | trom 7854 | The class of finite ordinals ω is a transitive class. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ Tr ω | ||
| Theorem | ordom 7855 | The class of finite ordinals ω is ordinal. Theorem 7.32 of [TakeutiZaring] p. 43. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ Ord ω | ||
| Theorem | elnn 7856 | A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) | ||
| Theorem | omon 7857 | The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.) |
| ⊢ (ω ∈ On ∨ ω = On) | ||
| Theorem | omelon2 7858 | Omega is an ordinal number. (Contributed by Mario Carneiro, 30-Jan-2013.) |
| ⊢ (ω ∈ V → ω ∈ On) | ||
| Theorem | nnlim 7859 | A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.) |
| ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) | ||
| Theorem | omssnlim 7860 | The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ω ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} | ||
| Theorem | limom 7861 | Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. Theorem 1.23 of [Schloeder] p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ Lim ω | ||
| Theorem | peano2b 7862 | A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
| ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) | ||
| Theorem | nnsuc 7863* | A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | ||
| Theorem | omsucne 7864 | A natural number is not the successor of itself. (Contributed by AV, 17-Oct-2023.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ≠ suc 𝐴) | ||
| Theorem | ssnlim 7865* | An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) |
| ⊢ ((Ord 𝐴 ∧ 𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω) | ||
| Theorem | omsinds 7866* | Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015.) (Proof shortened by BJ, 16-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 ∈ ω → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) ⇒ ⊢ (𝐴 ∈ ω → 𝜒) | ||
| Theorem | omun 7867 | The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∪ 𝐵) ∈ ω) | ||
| Theorem | peano1 7868 | Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. Note: Unlike most textbooks, our proofs of peano1 7868 through peano5 7872 do not use the Axiom of Infinity. Unlike Takeuti and Zaring, they also do not use the Axiom of Regularity. (Contributed by NM, 15-May-1994.) Avoid ax-un 7714. (Revised by BTernaryTau, 29-Nov-2024.) |
| ⊢ ∅ ∈ ω | ||
| Theorem | peano2 7869 | The successor of any natural number is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(2) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | ||
| Theorem | peano3 7870 | The successor of any natural number is not zero. One of Peano's five postulates for arithmetic. Proposition 7.30(3) of [TakeutiZaring] p. 42. (Contributed by NM, 3-Sep-2003.) |
| ⊢ (𝐴 ∈ ω → suc 𝐴 ≠ ∅) | ||
| Theorem | peano4 7871 | Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | peano5 7872* | The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 7879. (Contributed by NM, 18-Feb-2004.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 3-Oct-2024.) |
| ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
| Theorem | nn0suc 7873* | A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998.) |
| ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) | ||
| Theorem | find 7874* | The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Wolf Lammen, 28-May-2024.) |
| ⊢ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) ⇒ ⊢ 𝐴 = ω | ||
| Theorem | finds 7875* | Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ω → 𝜏) | ||
| Theorem | findsg 7876* | Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. The basis of this version is an arbitrary natural number 𝐵 instead of zero. (Contributed by NM, 16-Sep-1995.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝐵 ∈ ω → 𝜓) & ⊢ (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → 𝜏) | ||
| Theorem | finds2 7877* | Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝜏 → 𝜓) & ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) ⇒ ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) | ||
| Theorem | finds1 7878* | Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) ⇒ ⊢ (𝑥 ∈ ω → 𝜑) | ||
| Theorem | findes 7879 | Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. See tfindes 7842 for the transfinite version. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
| ⊢ [∅ / 𝑥]𝜑 & ⊢ (𝑥 ∈ ω → (𝜑 → [suc 𝑥 / 𝑥]𝜑)) ⇒ ⊢ (𝑥 ∈ ω → 𝜑) | ||
| Theorem | dmexg 7880 | The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | ||
| Theorem | rnexg 7881 | The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | ||
| Theorem | dmexd 7882 | The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 ∈ V) | ||
| Theorem | fndmexd 7883 | If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 Fn 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ V) | ||
| Theorem | dmfex 7884 | If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) | ||
| Theorem | fndmexb 7885 | The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024.) |
| ⊢ (𝐹 Fn 𝐴 → (𝐴 ∈ V ↔ 𝐹 ∈ V)) | ||
| Theorem | fdmexb 7886 | The domain of a function is a set iff the function is a set. (Contributed by AV, 8-Aug-2024.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (𝐴 ∈ V ↔ 𝐹 ∈ V)) | ||
| Theorem | dmfexALT 7887 | Alternate proof of dmfex 7884: shorter but using ax-rep 5237. (Contributed by NM, 27-Aug-2006.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 23-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐹 ∈ 𝐶 ∧ 𝐹:𝐴⟶𝐵) → 𝐴 ∈ V) | ||
| Theorem | dmex 7888 | The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ dom 𝐴 ∈ V | ||
| Theorem | rnex 7889 | The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ran 𝐴 ∈ V | ||
| Theorem | iprc 7890 | The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set, as in idcn 23151. (Contributed by NM, 1-Jan-2007.) |
| ⊢ ¬ I ∈ V | ||
| Theorem | resiexg 7891 | The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg 7192). (Contributed by NM, 13-Jan-2007.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) | ||
| Theorem | imaexg 7892 | The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) | ||
| Theorem | imaex 7893 | The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 “ 𝐵) ∈ V | ||
| Theorem | rnexd 7894 | The range of a set is a set. Deduction version of rnexd 7894. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ran 𝐴 ∈ V) | ||
| Theorem | imaexd 7895 | The image of a set is a set. Deduction version of imaexg 7892. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 “ 𝐵) ∈ V) | ||
| Theorem | exse2 7896 | Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.) |
| ⊢ (𝑅 ∈ 𝑉 → 𝑅 Se 𝐴) | ||
| Theorem | xpexr 7897 | If a Cartesian product is a set, one of its components must be a set. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → (𝐴 ∈ V ∨ 𝐵 ∈ V)) | ||
| Theorem | xpexr2 7898 | If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.) |
| ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | xpexcnv 7899 | A condition where the converse of xpex 7732 holds as well. Corollary 6.9(2) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.) |
| ⊢ ((𝐵 ≠ ∅ ∧ (𝐴 × 𝐵) ∈ V) → 𝐴 ∈ V) | ||
| Theorem | soex 7900 | If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ∈ 𝑉) → 𝐴 ∈ V) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |