MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nn Structured version   Visualization version   GIF version

Definition df-nn 11983
Description: Define the set of positive integers. Some authors, especially in analysis books, call these the natural numbers, whereas other authors choose to include 0 in their definition of natural numbers. Note that is a subset of complex numbers (nnsscn 11987), in contrast to the more elementary ordinal natural numbers ω, df-om 7722). See nnind 12000 for the principle of mathematical induction. See df-n0 12243 for the set of nonnegative integers 0. See dfn2 12255 for defined in terms of 0.

This is a technical definition that helps us avoid the Axiom of Infinity ax-inf2 9408 in certain proofs. For a more conventional and intuitive definition ("the smallest set of reals containing 1 as well as the successor of every member") see dfnn3 11996 (or its slight variant dfnn2 11995). (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 3-May-2014.)

Assertion
Ref Expression
df-nn ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)

Detailed syntax breakdown of Definition df-nn
StepHypRef Expression
1 cn 11982 . 2 class
2 vx . . . . 5 setvar 𝑥
3 cvv 3433 . . . . 5 class V
42cv 1538 . . . . . 6 class 𝑥
5 c1 10881 . . . . . 6 class 1
6 caddc 10883 . . . . . 6 class +
74, 5, 6co 7284 . . . . 5 class (𝑥 + 1)
82, 3, 7cmpt 5158 . . . 4 class (𝑥 ∈ V ↦ (𝑥 + 1))
98, 5crdg 8249 . . 3 class rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1)
10 com 7721 . . 3 class ω
119, 10cima 5593 . 2 class (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
121, 11wceq 1539 1 wff ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
Colors of variables: wff setvar class
This definition is referenced by:  nnexALT  11984  peano5nni  11985  1nn  11993  peano2nn  11994
  Copyright terms: Public domain W3C validator