MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsson Structured version   Visualization version   GIF version

Theorem omsson 7870
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omsson ω ⊆ On

Proof of Theorem omsson
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-om 7867 . 2 ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
21ssrab3 4062 1 ω ⊆ On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wss 3931  Oncon0 6357  Lim wlim 6358  ωcom 7866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-ss 3948  df-om 7867
This theorem is referenced by:  limomss  7871  nnon  7872  ordom  7876  omssnlim  7881  omsinds  7887  nnunifi  9304  unblem1  9305  unblem2  9306  unblem3  9307  unblem4  9308  isfinite2  9311  card2inf  9574  ackbij1lem16  10253  ackbij1lem18  10255  fin23lem26  10344  fin23lem27  10347  isf32lem5  10376  fin1a2lem6  10424  pwfseqlem3  10679  tskinf  10788  grothomex  10848  ltsopi  10907  dmaddpi  10909  dmmulpi  10910  2ndcdisj  23399  finminlem  36341  cantnftermord  43311  omabs2  43323
  Copyright terms: Public domain W3C validator