MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsson Structured version   Visualization version   GIF version

Theorem omsson 7810
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omsson ω ⊆ On

Proof of Theorem omsson
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-om 7807 . 2 ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
21ssrab3 4035 1 ω ⊆ On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wss 3905  Oncon0 6311  Lim wlim 6312  ωcom 7806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-ss 3922  df-om 7807
This theorem is referenced by:  limomss  7811  nnon  7812  ordom  7816  omssnlim  7821  omsinds  7827  nnunifi  9196  unblem1  9197  unblem2  9198  unblem3  9199  unblem4  9200  isfinite2  9203  card2inf  9466  ackbij1lem16  10147  ackbij1lem18  10149  fin23lem26  10238  fin23lem27  10241  isf32lem5  10270  fin1a2lem6  10318  pwfseqlem3  10573  tskinf  10682  grothomex  10742  ltsopi  10801  dmaddpi  10803  dmmulpi  10804  2ndcdisj  23359  finminlem  36291  cantnftermord  43293  omabs2  43305
  Copyright terms: Public domain W3C validator