| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version | ||
| Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omsson | ⊢ ω ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om 7843 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
| 2 | 1 | ssrab3 4045 | 1 ⊢ ω ⊆ On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3914 Oncon0 6332 Lim wlim 6333 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-ss 3931 df-om 7843 |
| This theorem is referenced by: limomss 7847 nnon 7848 ordom 7852 omssnlim 7857 omsinds 7863 nnunifi 9238 unblem1 9239 unblem2 9240 unblem3 9241 unblem4 9242 isfinite2 9245 card2inf 9508 ackbij1lem16 10187 ackbij1lem18 10189 fin23lem26 10278 fin23lem27 10281 isf32lem5 10310 fin1a2lem6 10358 pwfseqlem3 10613 tskinf 10722 grothomex 10782 ltsopi 10841 dmaddpi 10843 dmmulpi 10844 2ndcdisj 23343 finminlem 36306 cantnftermord 43309 omabs2 43321 |
| Copyright terms: Public domain | W3C validator |