| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version | ||
| Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omsson | ⊢ ω ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om 7867 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
| 2 | 1 | ssrab3 4062 | 1 ⊢ ω ⊆ On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3931 Oncon0 6357 Lim wlim 6358 ωcom 7866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-ss 3948 df-om 7867 |
| This theorem is referenced by: limomss 7871 nnon 7872 ordom 7876 omssnlim 7881 omsinds 7887 nnunifi 9304 unblem1 9305 unblem2 9306 unblem3 9307 unblem4 9308 isfinite2 9311 card2inf 9574 ackbij1lem16 10253 ackbij1lem18 10255 fin23lem26 10344 fin23lem27 10347 isf32lem5 10376 fin1a2lem6 10424 pwfseqlem3 10679 tskinf 10788 grothomex 10848 ltsopi 10907 dmaddpi 10909 dmmulpi 10910 2ndcdisj 23399 finminlem 36341 cantnftermord 43311 omabs2 43323 |
| Copyright terms: Public domain | W3C validator |