| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version | ||
| Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omsson | ⊢ ω ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om 7846 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
| 2 | 1 | ssrab3 4048 | 1 ⊢ ω ⊆ On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3917 Oncon0 6335 Lim wlim 6336 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-ss 3934 df-om 7846 |
| This theorem is referenced by: limomss 7850 nnon 7851 ordom 7855 omssnlim 7860 omsinds 7866 nnunifi 9245 unblem1 9246 unblem2 9247 unblem3 9248 unblem4 9249 isfinite2 9252 card2inf 9515 ackbij1lem16 10194 ackbij1lem18 10196 fin23lem26 10285 fin23lem27 10288 isf32lem5 10317 fin1a2lem6 10365 pwfseqlem3 10620 tskinf 10729 grothomex 10789 ltsopi 10848 dmaddpi 10850 dmmulpi 10851 2ndcdisj 23350 finminlem 36313 cantnftermord 43316 omabs2 43328 |
| Copyright terms: Public domain | W3C validator |