| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version | ||
| Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omsson | ⊢ ω ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om 7797 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
| 2 | 1 | ssrab3 4032 | 1 ⊢ ω ⊆ On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ⊆ wss 3902 Oncon0 6306 Lim wlim 6307 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3919 df-om 7797 |
| This theorem is referenced by: limomss 7801 nnon 7802 ordom 7806 omssnlim 7811 omsinds 7817 nnunifi 9175 unblem1 9176 unblem2 9177 unblem3 9178 unblem4 9179 isfinite2 9182 card2inf 9441 ackbij1lem16 10122 ackbij1lem18 10124 fin23lem26 10213 fin23lem27 10216 isf32lem5 10245 fin1a2lem6 10293 pwfseqlem3 10548 tskinf 10657 grothomex 10717 ltsopi 10776 dmaddpi 10778 dmmulpi 10779 2ndcdisj 23369 finminlem 36351 cantnftermord 43352 omabs2 43364 |
| Copyright terms: Public domain | W3C validator |