| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version | ||
| Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omsson | ⊢ ω ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om 7803 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
| 2 | 1 | ssrab3 4031 | 1 ⊢ ω ⊆ On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ⊆ wss 3898 Oncon0 6311 Lim wlim 6312 ωcom 7802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-ss 3915 df-om 7803 |
| This theorem is referenced by: limomss 7807 nnon 7808 ordom 7812 omssnlim 7817 omsinds 7823 nnunifi 9182 unblem1 9183 unblem2 9184 unblem3 9185 unblem4 9186 isfinite2 9189 card2inf 9448 ackbij1lem16 10132 ackbij1lem18 10134 fin23lem26 10223 fin23lem27 10226 isf32lem5 10255 fin1a2lem6 10303 pwfseqlem3 10558 tskinf 10667 grothomex 10727 ltsopi 10786 dmaddpi 10788 dmmulpi 10789 2ndcdisj 23372 finminlem 36383 cantnftermord 43437 omabs2 43449 |
| Copyright terms: Public domain | W3C validator |