Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version |
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
omsson | ⊢ ω ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-om 7707 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
2 | 1 | ssrab3 4020 | 1 ⊢ ω ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ⊆ wss 3892 Oncon0 6265 Lim wlim 6266 ωcom 7706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-om 7707 |
This theorem is referenced by: limomss 7711 nnon 7712 ordom 7716 omssnlim 7721 omsinds 7727 omsindsOLD 7728 nnunifi 9043 unblem1 9044 unblem2 9045 unblem3 9046 unblem4 9047 isfinite2 9050 card2inf 9292 ackbij1lem16 9992 ackbij1lem18 9994 fin23lem26 10082 fin23lem27 10085 isf32lem5 10114 fin1a2lem6 10162 pwfseqlem3 10417 tskinf 10526 grothomex 10586 ltsopi 10645 dmaddpi 10647 dmmulpi 10648 2ndcdisj 22605 finminlem 34503 |
Copyright terms: Public domain | W3C validator |