Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version |
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
omsson | ⊢ ω ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-om 7713 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
2 | 1 | ssrab3 4015 | 1 ⊢ ω ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊆ wss 3887 Oncon0 6266 Lim wlim 6267 ωcom 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-om 7713 |
This theorem is referenced by: limomss 7717 nnon 7718 ordom 7722 omssnlim 7727 omsinds 7733 omsindsOLD 7734 nnunifi 9065 unblem1 9066 unblem2 9067 unblem3 9068 unblem4 9069 isfinite2 9072 card2inf 9314 ackbij1lem16 9991 ackbij1lem18 9993 fin23lem26 10081 fin23lem27 10084 isf32lem5 10113 fin1a2lem6 10161 pwfseqlem3 10416 tskinf 10525 grothomex 10585 ltsopi 10644 dmaddpi 10646 dmmulpi 10647 2ndcdisj 22607 finminlem 34507 |
Copyright terms: Public domain | W3C validator |