| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version | ||
| Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| omsson | ⊢ ω ⊆ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-om 7807 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
| 2 | 1 | ssrab3 4035 | 1 ⊢ ω ⊆ On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3905 Oncon0 6311 Lim wlim 6312 ωcom 7806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-ss 3922 df-om 7807 |
| This theorem is referenced by: limomss 7811 nnon 7812 ordom 7816 omssnlim 7821 omsinds 7827 nnunifi 9196 unblem1 9197 unblem2 9198 unblem3 9199 unblem4 9200 isfinite2 9203 card2inf 9466 ackbij1lem16 10147 ackbij1lem18 10149 fin23lem26 10238 fin23lem27 10241 isf32lem5 10270 fin1a2lem6 10318 pwfseqlem3 10573 tskinf 10682 grothomex 10742 ltsopi 10801 dmaddpi 10803 dmmulpi 10804 2ndcdisj 23359 finminlem 36291 cantnftermord 43293 omabs2 43305 |
| Copyright terms: Public domain | W3C validator |