Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version |
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
omsson | ⊢ ω ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-om 7688 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
2 | 1 | ssrab3 4011 | 1 ⊢ ω ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊆ wss 3883 Oncon0 6251 Lim wlim 6252 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-om 7688 |
This theorem is referenced by: limomss 7692 nnon 7693 ordom 7697 omssnlim 7702 omsinds 7708 omsindsOLD 7709 nnunifi 8995 unblem1 8996 unblem2 8997 unblem3 8998 unblem4 8999 isfinite2 9002 card2inf 9244 ackbij1lem16 9922 ackbij1lem18 9924 fin23lem26 10012 fin23lem27 10015 isf32lem5 10044 fin1a2lem6 10092 pwfseqlem3 10347 tskinf 10456 grothomex 10516 ltsopi 10575 dmaddpi 10577 dmmulpi 10578 2ndcdisj 22515 finminlem 34434 |
Copyright terms: Public domain | W3C validator |