![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version |
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
omsson | ⊢ ω ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-om 7856 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
2 | 1 | ssrab3 4081 | 1 ⊢ ω ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ⊆ wss 3949 Oncon0 6365 Lim wlim 6366 ωcom 7855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-om 7856 |
This theorem is referenced by: limomss 7860 nnon 7861 ordom 7865 omssnlim 7870 omsinds 7876 omsindsOLD 7877 nnunifi 9294 unblem1 9295 unblem2 9296 unblem3 9297 unblem4 9298 isfinite2 9301 card2inf 9550 ackbij1lem16 10230 ackbij1lem18 10232 fin23lem26 10320 fin23lem27 10323 isf32lem5 10352 fin1a2lem6 10400 pwfseqlem3 10655 tskinf 10764 grothomex 10824 ltsopi 10883 dmaddpi 10885 dmmulpi 10886 2ndcdisj 22960 finminlem 35251 cantnftermord 42118 omabs2 42130 |
Copyright terms: Public domain | W3C validator |