![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omsson | Structured version Visualization version GIF version |
Description: Omega is a subset of On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
omsson | ⊢ ω ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-om 7904 | . 2 ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | |
2 | 1 | ssrab3 4105 | 1 ⊢ ω ⊆ On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ⊆ wss 3976 Oncon0 6395 Lim wlim 6396 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-om 7904 |
This theorem is referenced by: limomss 7908 nnon 7909 ordom 7913 omssnlim 7918 omsinds 7924 omsindsOLD 7925 nnunifi 9355 unblem1 9356 unblem2 9357 unblem3 9358 unblem4 9359 isfinite2 9362 card2inf 9624 ackbij1lem16 10303 ackbij1lem18 10305 fin23lem26 10394 fin23lem27 10397 isf32lem5 10426 fin1a2lem6 10474 pwfseqlem3 10729 tskinf 10838 grothomex 10898 ltsopi 10957 dmaddpi 10959 dmmulpi 10960 2ndcdisj 23485 finminlem 36284 cantnftermord 43282 omabs2 43294 |
Copyright terms: Public domain | W3C validator |