| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elom | Structured version Visualization version GIF version | ||
| Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 9688. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| elom | ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2829 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐴 → ((Lim 𝑥 → 𝑦 ∈ 𝑥) ↔ (Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| 3 | 2 | albidv 1920 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥) ↔ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| 4 | df-om 7888 | . 2 ⊢ ω = {𝑦 ∈ On ∣ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)} | |
| 5 | 3, 4 | elrab2 3695 | 1 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 Oncon0 6384 Lim wlim 6385 ωcom 7887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-om 7888 |
| This theorem is referenced by: limomss 7892 trom 7896 nnlim 7901 limom 7903 peano1 7910 1onn 8678 2onn 8680 elom3 9688 dfom5b 35913 |
| Copyright terms: Public domain | W3C validator |