MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elom Structured version   Visualization version   GIF version

Theorem elom 7890
Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 9686. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
elom (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2827 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21imbi2d 340 . . 3 (𝑦 = 𝐴 → ((Lim 𝑥𝑦𝑥) ↔ (Lim 𝑥𝐴𝑥)))
32albidv 1918 . 2 (𝑦 = 𝐴 → (∀𝑥(Lim 𝑥𝑦𝑥) ↔ ∀𝑥(Lim 𝑥𝐴𝑥)))
4 df-om 7888 . 2 ω = {𝑦 ∈ On ∣ ∀𝑥(Lim 𝑥𝑦𝑥)}
53, 4elrab2 3698 1 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2106  Oncon0 6386  Lim wlim 6387  ωcom 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-om 7888
This theorem is referenced by:  limomss  7892  trom  7896  nnlim  7901  limom  7903  peano1  7911  1onn  8677  2onn  8679  elom3  9686  dfom5b  35894
  Copyright terms: Public domain W3C validator