MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elom Structured version   Visualization version   GIF version

Theorem elom 7810
Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 9591. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
elom (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21imbi2d 341 . . 3 (𝑦 = 𝐴 → ((Lim 𝑥𝑦𝑥) ↔ (Lim 𝑥𝐴𝑥)))
32albidv 1924 . 2 (𝑦 = 𝐴 → (∀𝑥(Lim 𝑥𝑦𝑥) ↔ ∀𝑥(Lim 𝑥𝐴𝑥)))
4 df-om 7808 . 2 ω = {𝑦 ∈ On ∣ ∀𝑥(Lim 𝑥𝑦𝑥)}
53, 4elrab2 3653 1 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wcel 2107  Oncon0 6322  Lim wlim 6323  ωcom 7807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3411  df-v 3450  df-om 7808
This theorem is referenced by:  limomss  7812  trom  7816  nnlim  7821  limom  7823  peano1  7830  1onn  8591  2onn  8593  elom3  9591  dfom5b  34526
  Copyright terms: Public domain W3C validator