![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elom | Structured version Visualization version GIF version |
Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 9649. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
elom | ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2820 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐴 → ((Lim 𝑥 → 𝑦 ∈ 𝑥) ↔ (Lim 𝑥 → 𝐴 ∈ 𝑥))) |
3 | 2 | albidv 1922 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥) ↔ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
4 | df-om 7860 | . 2 ⊢ ω = {𝑦 ∈ On ∣ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)} | |
5 | 3, 4 | elrab2 3686 | 1 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 Oncon0 6364 Lim wlim 6365 ωcom 7859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-om 7860 |
This theorem is referenced by: limomss 7864 trom 7868 nnlim 7873 limom 7875 peano1 7883 1onn 8645 2onn 8647 elom3 9649 dfom5b 35203 |
Copyright terms: Public domain | W3C validator |