| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elom | Structured version Visualization version GIF version | ||
| Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 9538. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| elom | ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑦 = 𝐴 → ((Lim 𝑥 → 𝑦 ∈ 𝑥) ↔ (Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| 3 | 2 | albidv 1921 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥) ↔ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| 4 | df-om 7797 | . 2 ⊢ ω = {𝑦 ∈ On ∣ ∀𝑥(Lim 𝑥 → 𝑦 ∈ 𝑥)} | |
| 5 | 3, 4 | elrab2 3645 | 1 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Oncon0 6306 Lim wlim 6307 ωcom 7796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-om 7797 |
| This theorem is referenced by: limomss 7801 trom 7805 nnlim 7810 limom 7812 peano1 7819 1onn 8555 2onn 8557 elom3 9538 dfom5b 35954 |
| Copyright terms: Public domain | W3C validator |