MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom3 Structured version   Visualization version   GIF version

Theorem dfom3 9383
Description: The class of natural numbers ω can be defined as the intersection of all inductive sets (which is the smallest inductive set, since inductive sets are closed under intersection), which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 5235 . . . . 5 ∅ ∈ V
21elintab 4896 . . . 4 (∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → ∅ ∈ 𝑥))
3 simpl 483 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → ∅ ∈ 𝑥)
42, 3mpgbir 1806 . . 3 ∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
5 suceq 6330 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
65eleq1d 2825 . . . . . . . . 9 (𝑦 = 𝑧 → (suc 𝑦𝑥 ↔ suc 𝑧𝑥))
76rspccv 3558 . . . . . . . 8 (∀𝑦𝑥 suc 𝑦𝑥 → (𝑧𝑥 → suc 𝑧𝑥))
87adantl 482 . . . . . . 7 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → (𝑧𝑥 → suc 𝑧𝑥))
98a2i 14 . . . . . 6 (((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
109alimi 1818 . . . . 5 (∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
11 vex 3435 . . . . . 6 𝑧 ∈ V
1211elintab 4896 . . . . 5 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥))
1311sucex 7650 . . . . . 6 suc 𝑧 ∈ V
1413elintab 4896 . . . . 5 (suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
1510, 12, 143imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
1615rgenw 3078 . . 3 𝑧 ∈ ω (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
17 peano5 7734 . . 3 ((∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ∧ ∀𝑧 ∈ ω (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})) → ω ⊆ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
184, 16, 17mp2an 689 . 2 ω ⊆ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
19 peano1 7729 . . . 4 ∅ ∈ ω
20 peano2 7731 . . . . 5 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
2120rgen 3076 . . . 4 𝑦 ∈ ω suc 𝑦 ∈ ω
22 omex 9379 . . . . . 6 ω ∈ V
23 eleq2 2829 . . . . . . . 8 (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω))
24 eleq2 2829 . . . . . . . . 9 (𝑥 = ω → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ ω))
2524raleqbi1dv 3339 . . . . . . . 8 (𝑥 = ω → (∀𝑦𝑥 suc 𝑦𝑥 ↔ ∀𝑦 ∈ ω suc 𝑦 ∈ ω))
2623, 25anbi12d 631 . . . . . . 7 (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ (∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω)))
27 eleq2 2829 . . . . . . 7 (𝑥 = ω → (𝑧𝑥𝑧 ∈ ω))
2826, 27imbi12d 345 . . . . . 6 (𝑥 = ω → (((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) ↔ ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω)))
2922, 28spcv 3543 . . . . 5 (∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω))
3012, 29sylbi 216 . . . 4 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω))
3119, 21, 30mp2ani 695 . . 3 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → 𝑧 ∈ ω)
3231ssriv 3930 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ⊆ ω
3318, 32eqssi 3942 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1540   = wceq 1542  wcel 2110  {cab 2717  wral 3066  wss 3892  c0 4262   cint 4885  suc csuc 6267  ωcom 7706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582  ax-inf2 9377
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-br 5080  df-opab 5142  df-tr 5197  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-om 7707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator