MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom3 Structured version   Visualization version   GIF version

Theorem dfom3 9607
Description: The class of natural numbers ω can be defined as the intersection of all inductive sets (which is the smallest inductive set, since inductive sets are closed under intersection), which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. Definition 1.20 of [Schloeder] p. 3. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 5265 . . . . 5 ∅ ∈ V
21elintab 4925 . . . 4 (∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → ∅ ∈ 𝑥))
3 simpl 482 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → ∅ ∈ 𝑥)
42, 3mpgbir 1799 . . 3 ∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
5 suceq 6403 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
65eleq1d 2814 . . . . . . . . 9 (𝑦 = 𝑧 → (suc 𝑦𝑥 ↔ suc 𝑧𝑥))
76rspccv 3588 . . . . . . . 8 (∀𝑦𝑥 suc 𝑦𝑥 → (𝑧𝑥 → suc 𝑧𝑥))
87adantl 481 . . . . . . 7 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → (𝑧𝑥 → suc 𝑧𝑥))
98a2i 14 . . . . . 6 (((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
109alimi 1811 . . . . 5 (∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
11 vex 3454 . . . . . 6 𝑧 ∈ V
1211elintab 4925 . . . . 5 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥))
1311sucex 7785 . . . . . 6 suc 𝑧 ∈ V
1413elintab 4925 . . . . 5 (suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
1510, 12, 143imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
1615rgenw 3049 . . 3 𝑧 ∈ ω (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
17 peano5 7872 . . 3 ((∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ∧ ∀𝑧 ∈ ω (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})) → ω ⊆ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
184, 16, 17mp2an 692 . 2 ω ⊆ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
19 peano1 7868 . . . 4 ∅ ∈ ω
20 peano2 7869 . . . . 5 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
2120rgen 3047 . . . 4 𝑦 ∈ ω suc 𝑦 ∈ ω
22 omex 9603 . . . . . 6 ω ∈ V
23 eleq2 2818 . . . . . . . 8 (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω))
24 eleq2 2818 . . . . . . . . 9 (𝑥 = ω → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ ω))
2524raleqbi1dv 3313 . . . . . . . 8 (𝑥 = ω → (∀𝑦𝑥 suc 𝑦𝑥 ↔ ∀𝑦 ∈ ω suc 𝑦 ∈ ω))
2623, 25anbi12d 632 . . . . . . 7 (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ (∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω)))
27 eleq2 2818 . . . . . . 7 (𝑥 = ω → (𝑧𝑥𝑧 ∈ ω))
2826, 27imbi12d 344 . . . . . 6 (𝑥 = ω → (((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) ↔ ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω)))
2922, 28spcv 3574 . . . . 5 (∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω))
3012, 29sylbi 217 . . . 4 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω))
3119, 21, 30mp2ani 698 . . 3 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → 𝑧 ∈ ω)
3231ssriv 3953 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ⊆ ω
3318, 32eqssi 3966 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wss 3917  c0 4299   cint 4913  suc csuc 6337  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-om 7846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator