MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfom3 Structured version   Visualization version   GIF version

Theorem dfom3 9576
Description: The class of natural numbers ω can be defined as the intersection of all inductive sets (which is the smallest inductive set, since inductive sets are closed under intersection), which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. Definition 1.20 of [Schloeder] p. 3. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfom3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 5257 . . . . 5 ∅ ∈ V
21elintab 4918 . . . 4 (∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → ∅ ∈ 𝑥))
3 simpl 482 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → ∅ ∈ 𝑥)
42, 3mpgbir 1799 . . 3 ∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
5 suceq 6388 . . . . . . . . . 10 (𝑦 = 𝑧 → suc 𝑦 = suc 𝑧)
65eleq1d 2813 . . . . . . . . 9 (𝑦 = 𝑧 → (suc 𝑦𝑥 ↔ suc 𝑧𝑥))
76rspccv 3582 . . . . . . . 8 (∀𝑦𝑥 suc 𝑦𝑥 → (𝑧𝑥 → suc 𝑧𝑥))
87adantl 481 . . . . . . 7 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → (𝑧𝑥 → suc 𝑧𝑥))
98a2i 14 . . . . . 6 (((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
109alimi 1811 . . . . 5 (∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
11 vex 3448 . . . . . 6 𝑧 ∈ V
1211elintab 4918 . . . . 5 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥))
1311sucex 7762 . . . . . 6 suc 𝑧 ∈ V
1413elintab 4918 . . . . 5 (suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ↔ ∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → suc 𝑧𝑥))
1510, 12, 143imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
1615rgenw 3048 . . 3 𝑧 ∈ ω (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
17 peano5 7849 . . 3 ((∅ ∈ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ∧ ∀𝑧 ∈ ω (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → suc 𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})) → ω ⊆ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)})
184, 16, 17mp2an 692 . 2 ω ⊆ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
19 peano1 7845 . . . 4 ∅ ∈ ω
20 peano2 7846 . . . . 5 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
2120rgen 3046 . . . 4 𝑦 ∈ ω suc 𝑦 ∈ ω
22 omex 9572 . . . . . 6 ω ∈ V
23 eleq2 2817 . . . . . . . 8 (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω))
24 eleq2 2817 . . . . . . . . 9 (𝑥 = ω → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ ω))
2524raleqbi1dv 3308 . . . . . . . 8 (𝑥 = ω → (∀𝑦𝑥 suc 𝑦𝑥 ↔ ∀𝑦 ∈ ω suc 𝑦 ∈ ω))
2623, 25anbi12d 632 . . . . . . 7 (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ (∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω)))
27 eleq2 2817 . . . . . . 7 (𝑥 = ω → (𝑧𝑥𝑧 ∈ ω))
2826, 27imbi12d 344 . . . . . 6 (𝑥 = ω → (((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) ↔ ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω)))
2922, 28spcv 3568 . . . . 5 (∀𝑥((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) → 𝑧𝑥) → ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω))
3012, 29sylbi 217 . . . 4 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → ((∅ ∈ ω ∧ ∀𝑦 ∈ ω suc 𝑦 ∈ ω) → 𝑧 ∈ ω))
3119, 21, 30mp2ani 698 . . 3 (𝑧 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} → 𝑧 ∈ ω)
3231ssriv 3947 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} ⊆ ω
3318, 32eqssi 3960 1 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wss 3911  c0 4292   cint 4906  suc csuc 6322  ωcom 7822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-om 7823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator