Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmran Structured version   Visualization version   GIF version

Theorem reldmran 49607
Description: The domain of Ran is a relation. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
reldmran Rel dom Ran

Proof of Theorem reldmran
Dummy variables 𝑐 𝑑 𝑒 𝑓 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ran 49603 . 2 Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
21reldmmpo 7483 1 Rel dom Ran
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  csb 3851  cop 4583   × cxp 5617  dom cdm 5619  Rel wrel 5624  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  oppCatcoppc 17617   Func cfunc 17761   FuncCat cfuc 17852   oppFunc coppf 49117   UP cup 49168   −∘F cprcof 49368   Ran cran 49601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-dm 5629  df-oprab 7353  df-mpo 7354  df-ran 49603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator