| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ranfn | Structured version Visualization version GIF version | ||
| Description: Ran is a function on ((V × V) × V). (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| ranfn | ⊢ Ran Fn ((V × V) × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ran 49590 | . 2 ⊢ Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) | |
| 2 | ovex 7402 | . . . . 5 ⊢ (𝑐 Func 𝑑) ∈ V | |
| 3 | ovex 7402 | . . . . 5 ⊢ (𝑐 Func 𝑒) ∈ V | |
| 4 | 2, 3 | mpoex 8037 | . . . 4 ⊢ (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) ∈ V |
| 5 | 4 | csbex 5261 | . . 3 ⊢ ⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) ∈ V |
| 6 | 5 | csbex 5261 | . 2 ⊢ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) ∈ V |
| 7 | 1, 6 | fnmpoi 8028 | 1 ⊢ Ran Fn ((V × V) × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ⦋csb 3859 〈cop 4591 × cxp 5629 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 oppCatcoppc 17652 Func cfunc 17796 FuncCat cfuc 17887 oppFunc coppf 49104 UP cup 49155 −∘F cprcof 49355 Ran cran 49588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-ran 49590 |
| This theorem is referenced by: reldmran2 49600 ranrcl 49604 |
| Copyright terms: Public domain | W3C validator |