Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranfval Structured version   Visualization version   GIF version

Theorem ranfval 49352
Description: Value of the function generating the set of right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypotheses
Ref Expression
lanfval.r 𝑅 = (𝐷 FuncCat 𝐸)
lanfval.s 𝑆 = (𝐶 FuncCat 𝐸)
lanfval.c (𝜑𝐶𝑈)
lanfval.d (𝜑𝐷𝑉)
lanfval.e (𝜑𝐸𝑊)
ranfval.o 𝑂 = (oppCat‘𝑅)
ranfval.p 𝑃 = (oppCat‘𝑆)
Assertion
Ref Expression
ranfval (𝜑 → (⟨𝐶, 𝐷⟩Ran𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂UP𝑃)𝑥)))
Distinct variable groups:   𝐶,𝑓,𝑥   𝐷,𝑓,𝑥   𝑓,𝐸,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝑆(𝑥,𝑓)   𝑈(𝑥,𝑓)   𝑂(𝑥,𝑓)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem ranfval
Dummy variables 𝑐 𝑑 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ran 49346 . . 3 Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
21a1i 11 . 2 (𝜑 → Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥))))
3 fvexd 6888 . . 3 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → 𝑝 = ⟨𝐶, 𝐷⟩)
54fveq2d 6877 . . . 4 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) = (1st ‘⟨𝐶, 𝐷⟩))
6 lanfval.c . . . . . 6 (𝜑𝐶𝑈)
7 lanfval.d . . . . . 6 (𝜑𝐷𝑉)
8 op1stg 7995 . . . . . 6 ((𝐶𝑈𝐷𝑉) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
96, 7, 8syl2anc 584 . . . . 5 (𝜑 → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
115, 10eqtrd 2769 . . 3 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) = 𝐶)
12 fvexd 6888 . . . 4 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) ∈ V)
13 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → 𝑝 = ⟨𝐶, 𝐷⟩)
1413fveq2d 6877 . . . . 5 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = (2nd ‘⟨𝐶, 𝐷⟩))
15 op2ndg 7996 . . . . . . 7 ((𝐶𝑈𝐷𝑉) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
166, 7, 15syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1716ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1814, 17eqtrd 2769 . . . 4 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = 𝐷)
19 simplr 768 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
20 simpr 484 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
2119, 20oveq12d 7418 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
22 simpllr 775 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸))
2322simprd 495 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑒 = 𝐸)
2419, 23oveq12d 7418 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑒) = (𝐶 Func 𝐸))
2520, 23oveq12d 7418 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑑 FuncCat 𝑒) = (𝐷 FuncCat 𝐸))
2625fveq2d 6877 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppCat‘(𝑑 FuncCat 𝑒)) = (oppCat‘(𝐷 FuncCat 𝐸)))
27 ranfval.o . . . . . . . . 9 𝑂 = (oppCat‘𝑅)
28 lanfval.r . . . . . . . . . 10 𝑅 = (𝐷 FuncCat 𝐸)
2928fveq2i 6876 . . . . . . . . 9 (oppCat‘𝑅) = (oppCat‘(𝐷 FuncCat 𝐸))
3027, 29eqtri 2757 . . . . . . . 8 𝑂 = (oppCat‘(𝐷 FuncCat 𝐸))
3126, 30eqtr4di 2787 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppCat‘(𝑑 FuncCat 𝑒)) = 𝑂)
3219, 23oveq12d 7418 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 FuncCat 𝑒) = (𝐶 FuncCat 𝐸))
3332fveq2d 6877 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppCat‘(𝑐 FuncCat 𝑒)) = (oppCat‘(𝐶 FuncCat 𝐸)))
34 ranfval.p . . . . . . . . 9 𝑃 = (oppCat‘𝑆)
35 lanfval.s . . . . . . . . . 10 𝑆 = (𝐶 FuncCat 𝐸)
3635fveq2i 6876 . . . . . . . . 9 (oppCat‘𝑆) = (oppCat‘(𝐶 FuncCat 𝐸))
3734, 36eqtri 2757 . . . . . . . 8 𝑃 = (oppCat‘(𝐶 FuncCat 𝐸))
3833, 37eqtr4di 2787 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppCat‘(𝑐 FuncCat 𝑒)) = 𝑃)
3931, 38oveq12d 7418 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒))) = (𝑂UP𝑃))
4020, 23opeq12d 4855 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨𝑑, 𝑒⟩ = ⟨𝐷, 𝐸⟩)
4140fvoveq1d 7422 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓)) = (oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓)))
42 eqidd 2735 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑥 = 𝑥)
4339, 41, 42oveq123d 7421 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥) = ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂UP𝑃)𝑥))
4421, 24, 43mpoeq123dv 7477 . . . 4 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂UP𝑃)𝑥)))
4512, 18, 44csbied2 3909 . . 3 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂UP𝑃)𝑥)))
463, 11, 45csbied2 3909 . 2 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂UP𝑃)𝑥)))
476elexd 3481 . . 3 (𝜑𝐶 ∈ V)
487elexd 3481 . . 3 (𝜑𝐷 ∈ V)
4947, 48opelxpd 5691 . 2 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (V × V))
50 lanfval.e . . 3 (𝜑𝐸𝑊)
5150elexd 3481 . 2 (𝜑𝐸 ∈ V)
52 ovex 7433 . . . 4 (𝐶 Func 𝐷) ∈ V
53 ovex 7433 . . . 4 (𝐶 Func 𝐸) ∈ V
5452, 53mpoex 8073 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂UP𝑃)𝑥)) ∈ V
5554a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂UP𝑃)𝑥)) ∈ V)
562, 46, 49, 51, 55ovmpod 7554 1 (𝜑 → (⟨𝐶, 𝐷⟩Ran𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((oppFunc‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂UP𝑃)𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  csb 3872  cop 4605   × cxp 5650  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982  oppCatcoppc 17710   Func cfunc 17854   FuncCat cfuc 17945  oppFunccoppf 48950  UPcup 48974   −∘F cprcof 49147  Rancran 49344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-ran 49346
This theorem is referenced by:  reldmran2  49354  ranval  49356  ranrcl  49358
  Copyright terms: Public domain W3C validator