Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranfval Structured version   Visualization version   GIF version

Theorem ranfval 49593
Description: Value of the function generating the set of right Kan extensions. (Contributed by Zhi Wang, 4-Nov-2025.)
Hypotheses
Ref Expression
lanfval.r 𝑅 = (𝐷 FuncCat 𝐸)
lanfval.s 𝑆 = (𝐶 FuncCat 𝐸)
lanfval.c (𝜑𝐶𝑈)
lanfval.d (𝜑𝐷𝑉)
lanfval.e (𝜑𝐸𝑊)
ranfval.o 𝑂 = (oppCat‘𝑅)
ranfval.p 𝑃 = (oppCat‘𝑆)
Assertion
Ref Expression
ranfval (𝜑 → (⟨𝐶, 𝐷⟩ Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂 UP 𝑃)𝑥)))
Distinct variable groups:   𝐶,𝑓,𝑥   𝐷,𝑓,𝑥   𝑓,𝐸,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝑆(𝑥,𝑓)   𝑈(𝑥,𝑓)   𝑂(𝑥,𝑓)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem ranfval
Dummy variables 𝑐 𝑑 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ran 49587 . . 3 Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
21a1i 11 . 2 (𝜑 → Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))))
3 fvexd 6875 . . 3 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) ∈ V)
4 simprl 770 . . . . 5 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → 𝑝 = ⟨𝐶, 𝐷⟩)
54fveq2d 6864 . . . 4 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) = (1st ‘⟨𝐶, 𝐷⟩))
6 lanfval.c . . . . . 6 (𝜑𝐶𝑈)
7 lanfval.d . . . . . 6 (𝜑𝐷𝑉)
8 op1stg 7982 . . . . . 6 ((𝐶𝑈𝐷𝑉) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
96, 7, 8syl2anc 584 . . . . 5 (𝜑 → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
109adantr 480 . . . 4 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
115, 10eqtrd 2765 . . 3 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) = 𝐶)
12 fvexd 6875 . . . 4 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) ∈ V)
13 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → 𝑝 = ⟨𝐶, 𝐷⟩)
1413fveq2d 6864 . . . . 5 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = (2nd ‘⟨𝐶, 𝐷⟩))
15 op2ndg 7983 . . . . . . 7 ((𝐶𝑈𝐷𝑉) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
166, 7, 15syl2anc 584 . . . . . 6 (𝜑 → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1716ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1814, 17eqtrd 2765 . . . 4 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) = 𝐷)
19 simplr 768 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶)
20 simpr 484 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
2119, 20oveq12d 7407 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
22 simpllr 775 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸))
2322simprd 495 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑒 = 𝐸)
2419, 23oveq12d 7407 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 Func 𝑒) = (𝐶 Func 𝐸))
2520, 23oveq12d 7407 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑑 FuncCat 𝑒) = (𝐷 FuncCat 𝐸))
2625fveq2d 6864 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppCat‘(𝑑 FuncCat 𝑒)) = (oppCat‘(𝐷 FuncCat 𝐸)))
27 ranfval.o . . . . . . . . 9 𝑂 = (oppCat‘𝑅)
28 lanfval.r . . . . . . . . . 10 𝑅 = (𝐷 FuncCat 𝐸)
2928fveq2i 6863 . . . . . . . . 9 (oppCat‘𝑅) = (oppCat‘(𝐷 FuncCat 𝐸))
3027, 29eqtri 2753 . . . . . . . 8 𝑂 = (oppCat‘(𝐷 FuncCat 𝐸))
3126, 30eqtr4di 2783 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppCat‘(𝑑 FuncCat 𝑒)) = 𝑂)
3219, 23oveq12d 7407 . . . . . . . . 9 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑐 FuncCat 𝑒) = (𝐶 FuncCat 𝐸))
3332fveq2d 6864 . . . . . . . 8 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppCat‘(𝑐 FuncCat 𝑒)) = (oppCat‘(𝐶 FuncCat 𝐸)))
34 ranfval.p . . . . . . . . 9 𝑃 = (oppCat‘𝑆)
35 lanfval.s . . . . . . . . . 10 𝑆 = (𝐶 FuncCat 𝐸)
3635fveq2i 6863 . . . . . . . . 9 (oppCat‘𝑆) = (oppCat‘(𝐶 FuncCat 𝐸))
3734, 36eqtri 2753 . . . . . . . 8 𝑃 = (oppCat‘(𝐶 FuncCat 𝐸))
3833, 37eqtr4di 2783 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (oppCat‘(𝑐 FuncCat 𝑒)) = 𝑃)
3931, 38oveq12d 7407 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒))) = (𝑂 UP 𝑃))
4020, 23opeq12d 4847 . . . . . . 7 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ⟨𝑑, 𝑒⟩ = ⟨𝐷, 𝐸⟩)
4140fvoveq1d 7411 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → ( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓)) = ( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓)))
42 eqidd 2731 . . . . . 6 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → 𝑥 = 𝑥)
4339, 41, 42oveq123d 7410 . . . . 5 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥) = (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂 UP 𝑃)𝑥))
4421, 24, 43mpoeq123dv 7466 . . . 4 ((((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) ∧ 𝑑 = 𝐷) → (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂 UP 𝑃)𝑥)))
4512, 18, 44csbied2 3901 . . 3 (((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) ∧ 𝑐 = 𝐶) → (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂 UP 𝑃)𝑥)))
463, 11, 45csbied2 3901 . 2 ((𝜑 ∧ (𝑝 = ⟨𝐶, 𝐷⟩ ∧ 𝑒 = 𝐸)) → (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂 UP 𝑃)𝑥)))
476elexd 3474 . . 3 (𝜑𝐶 ∈ V)
487elexd 3474 . . 3 (𝜑𝐷 ∈ V)
4947, 48opelxpd 5679 . 2 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (V × V))
50 lanfval.e . . 3 (𝜑𝐸𝑊)
5150elexd 3474 . 2 (𝜑𝐸 ∈ V)
52 ovex 7422 . . . 4 (𝐶 Func 𝐷) ∈ V
53 ovex 7422 . . . 4 (𝐶 Func 𝐸) ∈ V
5452, 53mpoex 8060 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂 UP 𝑃)𝑥)) ∈ V
5554a1i 11 . 2 (𝜑 → (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂 UP 𝑃)𝑥)) ∈ V)
562, 46, 49, 51, 55ovmpod 7543 1 (𝜑 → (⟨𝐶, 𝐷⟩ Ran 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐷, 𝐸⟩ −∘F 𝑓))(𝑂 UP 𝑃)𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  csb 3864  cop 4597   × cxp 5638  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969  oppCatcoppc 17678   Func cfunc 17822   FuncCat cfuc 17913   oppFunc coppf 49101   UP cup 49152   −∘F cprcof 49352   Ran cran 49585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-ran 49587
This theorem is referenced by:  ranpropd  49595  reldmran2  49597  ranval  49599  ranrcl  49601
  Copyright terms: Public domain W3C validator