| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ranval2 | Structured version Visualization version GIF version | ||
| Description: The set of right Kan extensions is the set of universal pairs. Therefore, the explicit universal property can be recovered by oppcup2 49187 and oppcup3lem 49185. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| isran.o | ⊢ 𝑂 = (oppCat‘(𝐷 FuncCat 𝐸)) |
| isran.p | ⊢ 𝑃 = (oppCat‘(𝐶 FuncCat 𝐸)) |
| isran.k | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) |
| ranval2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| ranval2 | ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isran.o | . . . 4 ⊢ 𝑂 = (oppCat‘(𝐷 FuncCat 𝐸)) | |
| 2 | isran.p | . . . 4 ⊢ 𝑃 = (oppCat‘(𝐶 FuncCat 𝐸)) | |
| 3 | isran.k | . . . . 5 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) → 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) | |
| 6 | 1, 2, 4, 5 | isran 49607 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) → 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸) | |
| 10 | ranval2.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 12 | 9 | fucbas 17931 | . . . . . . . . 9 ⊢ (𝐶 Func 𝐸) = (Base‘(𝐶 FuncCat 𝐸)) |
| 13 | 2, 12 | oppcbas 17685 | . . . . . . . 8 ⊢ (𝐶 Func 𝐸) = (Base‘𝑃) |
| 14 | 13 | uprcl 49163 | . . . . . . 7 ⊢ (𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋) → (〈𝐽, tpos 𝐾〉 ∈ (𝑂 Func 𝑃) ∧ 𝑋 ∈ (𝐶 Func 𝐸))) |
| 15 | 14 | simprd 495 | . . . . . 6 ⊢ (𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋) → 𝑋 ∈ (𝐶 Func 𝐸)) |
| 16 | 15 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → 𝑋 ∈ (𝐶 Func 𝐸)) |
| 17 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) |
| 18 | 8, 9, 11, 16, 17, 1, 2 | ranval 49599 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) |
| 19 | 7, 18 | eleqtrrd 2832 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) |
| 20 | 6, 19 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) ↔ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋))) |
| 21 | 20 | eqrdv 2728 | 1 ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4597 ‘cfv 6513 (class class class)co 7389 tpos ctpos 8206 oppCatcoppc 17678 Func cfunc 17822 FuncCat cfuc 17913 UP cup 49152 −∘F cprcof 49352 Ran cran 49585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-oppc 17679 df-func 17826 df-cofu 17828 df-nat 17914 df-fuc 17915 df-xpc 18139 df-curf 18181 df-oppf 49102 df-up 49153 df-swapf 49239 df-fuco 49296 df-prcof 49353 df-ran 49587 |
| This theorem is referenced by: ranval3 49610 ranup 49621 |
| Copyright terms: Public domain | W3C validator |