| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ranval2 | Structured version Visualization version GIF version | ||
| Description: The set of right Kan extensions is the set of universal pairs. Therefore, the explicit universal property can be recovered by oppcup2 49319 and oppcup3lem 49317. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| isran.o | ⊢ 𝑂 = (oppCat‘(𝐷 FuncCat 𝐸)) |
| isran.p | ⊢ 𝑃 = (oppCat‘(𝐶 FuncCat 𝐸)) |
| isran.k | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) |
| ranval2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| ranval2 | ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isran.o | . . . 4 ⊢ 𝑂 = (oppCat‘(𝐷 FuncCat 𝐸)) | |
| 2 | isran.p | . . . 4 ⊢ 𝑃 = (oppCat‘(𝐶 FuncCat 𝐸)) | |
| 3 | isran.k | . . . . 5 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) → 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) | |
| 6 | 1, 2, 4, 5 | isran 49739 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) → 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) | |
| 8 | eqid 2731 | . . . . 5 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 9 | eqid 2731 | . . . . 5 ⊢ (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸) | |
| 10 | ranval2.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 12 | 9 | fucbas 17870 | . . . . . . . . 9 ⊢ (𝐶 Func 𝐸) = (Base‘(𝐶 FuncCat 𝐸)) |
| 13 | 2, 12 | oppcbas 17624 | . . . . . . . 8 ⊢ (𝐶 Func 𝐸) = (Base‘𝑃) |
| 14 | 13 | uprcl 49295 | . . . . . . 7 ⊢ (𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋) → (〈𝐽, tpos 𝐾〉 ∈ (𝑂 Func 𝑃) ∧ 𝑋 ∈ (𝐶 Func 𝐸))) |
| 15 | 14 | simprd 495 | . . . . . 6 ⊢ (𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋) → 𝑋 ∈ (𝐶 Func 𝐸)) |
| 16 | 15 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → 𝑋 ∈ (𝐶 Func 𝐸)) |
| 17 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈𝐽, 𝐾〉) |
| 18 | 8, 9, 11, 16, 17, 1, 2 | ranval 49731 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) |
| 19 | 7, 18 | eleqtrrd 2834 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) → 𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋)) |
| 20 | 6, 19 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) ↔ 𝑥 ∈ (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋))) |
| 21 | 20 | eqrdv 2729 | 1 ⊢ (𝜑 → (𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) = (〈𝐽, tpos 𝐾〉(𝑂 UP 𝑃)𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 ‘cfv 6481 (class class class)co 7346 tpos ctpos 8155 oppCatcoppc 17617 Func cfunc 17761 FuncCat cfuc 17852 UP cup 49284 −∘F cprcof 49484 Ran cran 49717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-oppc 17618 df-func 17765 df-cofu 17767 df-nat 17853 df-fuc 17854 df-xpc 18078 df-curf 18120 df-oppf 49234 df-up 49285 df-swapf 49371 df-fuco 49428 df-prcof 49485 df-ran 49719 |
| This theorem is referenced by: ranval3 49742 ranup 49753 |
| Copyright terms: Public domain | W3C validator |