Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relran Structured version   Visualization version   GIF version

Theorem relran 49606
Description: The set of right Kan extensions is a relation. (Contributed by Zhi Wang, 4-Nov-2025.)
Assertion
Ref Expression
relran Rel (𝐹(𝑃 Ran 𝐸)𝑋)

Proof of Theorem relran
Dummy variables 𝑓 𝑥 𝑐 𝑑 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5753 . . 3 Rel ∅
2 releq 5731 . . 3 ((𝐹(𝑃 Ran 𝐸)𝑋) = ∅ → (Rel (𝐹(𝑃 Ran 𝐸)𝑋) ↔ Rel ∅))
31, 2mpbiri 258 . 2 ((𝐹(𝑃 Ran 𝐸)𝑋) = ∅ → Rel (𝐹(𝑃 Ran 𝐸)𝑋))
4 n0 4312 . . 3 ((𝐹(𝑃 Ran 𝐸)𝑋) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋))
5 relup 49165 . . . . 5 Rel (⟨(1st ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))⟩((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑋)
6 ne0i 4300 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (𝐹(𝑃 Ran 𝐸)𝑋) ≠ ∅)
7 oveq 7375 . . . . . . . . . . . 12 ((𝑃 Ran 𝐸) = ∅ → (𝐹(𝑃 Ran 𝐸)𝑋) = (𝐹𝑋))
8 0ov 7406 . . . . . . . . . . . 12 (𝐹𝑋) = ∅
97, 8eqtrdi 2780 . . . . . . . . . . 11 ((𝑃 Ran 𝐸) = ∅ → (𝐹(𝑃 Ran 𝐸)𝑋) = ∅)
109necon3i 2957 . . . . . . . . . 10 ((𝐹(𝑃 Ran 𝐸)𝑋) ≠ ∅ → (𝑃 Ran 𝐸) ≠ ∅)
11 n0 4312 . . . . . . . . . . 11 ((𝑃 Ran 𝐸) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑃 Ran 𝐸))
12 df-ran 49590 . . . . . . . . . . . . . 14 Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
1312elmpocl1 7611 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑃 Ran 𝐸) → 𝑃 ∈ (V × V))
14 1st2nd2 7986 . . . . . . . . . . . . 13 (𝑃 ∈ (V × V) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1513, 14syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (𝑃 Ran 𝐸) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1615exlimiv 1930 . . . . . . . . . . 11 (∃𝑥 𝑥 ∈ (𝑃 Ran 𝐸) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1711, 16sylbi 217 . . . . . . . . . 10 ((𝑃 Ran 𝐸) ≠ ∅ → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
186, 10, 173syl 18 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1918oveq1d 7384 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (𝑃 Ran 𝐸) = (⟨(1st𝑃), (2nd𝑃)⟩ Ran 𝐸))
2019oveqd 7386 . . . . . . 7 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (𝐹(𝑃 Ran 𝐸)𝑋) = (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Ran 𝐸)𝑋))
21 eqid 2729 . . . . . . . 8 ((2nd𝑃) FuncCat 𝐸) = ((2nd𝑃) FuncCat 𝐸)
22 eqid 2729 . . . . . . . 8 ((1st𝑃) FuncCat 𝐸) = ((1st𝑃) FuncCat 𝐸)
23 id 22 . . . . . . . . . . 11 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → 𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋))
2423, 20eleqtrd 2830 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → 𝑥 ∈ (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Ran 𝐸)𝑋))
25 ranrcl 49604 . . . . . . . . . 10 (𝑥 ∈ (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Ran 𝐸)𝑋) → (𝐹 ∈ ((1st𝑃) Func (2nd𝑃)) ∧ 𝑋 ∈ ((1st𝑃) Func 𝐸)))
2624, 25syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (𝐹 ∈ ((1st𝑃) Func (2nd𝑃)) ∧ 𝑋 ∈ ((1st𝑃) Func 𝐸)))
2726simpld 494 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → 𝐹 ∈ ((1st𝑃) Func (2nd𝑃)))
2826simprd 495 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → 𝑋 ∈ ((1st𝑃) Func 𝐸))
29 opex 5419 . . . . . . . . . . 11 ⟨(2nd𝑃), 𝐸⟩ ∈ V
3029a1i 11 . . . . . . . . . 10 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → ⟨(2nd𝑃), 𝐸⟩ ∈ V)
3127, 30prcofelvv 49362 . . . . . . . . 9 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹) ∈ (V × V))
32 1st2nd2 7986 . . . . . . . . 9 ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹) ∈ (V × V) → (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))⟩)
3331, 32syl 17 . . . . . . . 8 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹) = ⟨(1st ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)), (2nd ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))⟩)
34 eqid 2729 . . . . . . . 8 (oppCat‘((2nd𝑃) FuncCat 𝐸)) = (oppCat‘((2nd𝑃) FuncCat 𝐸))
35 eqid 2729 . . . . . . . 8 (oppCat‘((1st𝑃) FuncCat 𝐸)) = (oppCat‘((1st𝑃) FuncCat 𝐸))
3621, 22, 27, 28, 33, 34, 35ranval 49602 . . . . . . 7 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (𝐹(⟨(1st𝑃), (2nd𝑃)⟩ Ran 𝐸)𝑋) = (⟨(1st ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))⟩((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑋))
3720, 36eqtrd 2764 . . . . . 6 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (𝐹(𝑃 Ran 𝐸)𝑋) = (⟨(1st ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))⟩((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑋))
3837releqd 5733 . . . . 5 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → (Rel (𝐹(𝑃 Ran 𝐸)𝑋) ↔ Rel (⟨(1st ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹)), tpos (2nd ‘(⟨(2nd𝑃), 𝐸⟩ −∘F 𝐹))⟩((oppCat‘((2nd𝑃) FuncCat 𝐸)) UP (oppCat‘((1st𝑃) FuncCat 𝐸)))𝑋)))
395, 38mpbiri 258 . . . 4 (𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → Rel (𝐹(𝑃 Ran 𝐸)𝑋))
4039exlimiv 1930 . . 3 (∃𝑥 𝑥 ∈ (𝐹(𝑃 Ran 𝐸)𝑋) → Rel (𝐹(𝑃 Ran 𝐸)𝑋))
414, 40sylbi 217 . 2 ((𝐹(𝑃 Ran 𝐸)𝑋) ≠ ∅ → Rel (𝐹(𝑃 Ran 𝐸)𝑋))
423, 41pm2.61ine 3008 1 Rel (𝐹(𝑃 Ran 𝐸)𝑋)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3444  csb 3859  c0 4292  cop 4591   × cxp 5629  Rel wrel 5636  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181  oppCatcoppc 17652   Func cfunc 17796   FuncCat cfuc 17887   oppFunc coppf 49104   UP cup 49155   −∘F cprcof 49355   Ran cran 49588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17609  df-cid 17610  df-func 17800  df-cofu 17802  df-nat 17888  df-fuc 17889  df-xpc 18113  df-curf 18155  df-oppf 49105  df-up 49156  df-swapf 49242  df-fuco 49299  df-prcof 49356  df-ran 49590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator