MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval Structured version   Visualization version   GIF version

Theorem ressval 17172
Description: Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (π‘Š β†Ύs 𝐴)
ressbas.b 𝐡 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
ressval ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ 𝑅 = if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))

Proof of Theorem ressval
Dummy variables 𝑀 π‘Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2 𝑅 = (π‘Š β†Ύs 𝐴)
2 elex 3492 . . 3 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
3 elex 3492 . . 3 (𝐴 ∈ π‘Œ β†’ 𝐴 ∈ V)
4 simpl 483 . . . . 5 ((π‘Š ∈ V ∧ 𝐴 ∈ V) β†’ π‘Š ∈ V)
5 ovex 7438 . . . . 5 (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩) ∈ V
6 ifcl 4572 . . . . 5 ((π‘Š ∈ V ∧ (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩) ∈ V) β†’ if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)) ∈ V)
74, 5, 6sylancl 586 . . . 4 ((π‘Š ∈ V ∧ 𝐴 ∈ V) β†’ if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)) ∈ V)
8 simpl 483 . . . . . . . . 9 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ 𝑀 = π‘Š)
98fveq2d 6892 . . . . . . . 8 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
10 ressbas.b . . . . . . . 8 𝐡 = (Baseβ€˜π‘Š)
119, 10eqtr4di 2790 . . . . . . 7 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ (Baseβ€˜π‘€) = 𝐡)
12 simpr 485 . . . . . . 7 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ π‘Ž = 𝐴)
1311, 12sseq12d 4014 . . . . . 6 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ ((Baseβ€˜π‘€) βŠ† π‘Ž ↔ 𝐡 βŠ† 𝐴))
1412, 11ineq12d 4212 . . . . . . . 8 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ (π‘Ž ∩ (Baseβ€˜π‘€)) = (𝐴 ∩ 𝐡))
1514opeq2d 4879 . . . . . . 7 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ ⟨(Baseβ€˜ndx), (π‘Ž ∩ (Baseβ€˜π‘€))⟩ = ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)
168, 15oveq12d 7423 . . . . . 6 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘Ž ∩ (Baseβ€˜π‘€))⟩) = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩))
1713, 8, 16ifbieq12d 4555 . . . . 5 ((𝑀 = π‘Š ∧ π‘Ž = 𝐴) β†’ if((Baseβ€˜π‘€) βŠ† π‘Ž, 𝑀, (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘Ž ∩ (Baseβ€˜π‘€))⟩)) = if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
18 df-ress 17170 . . . . 5 β†Ύs = (𝑀 ∈ V, π‘Ž ∈ V ↦ if((Baseβ€˜π‘€) βŠ† π‘Ž, 𝑀, (𝑀 sSet ⟨(Baseβ€˜ndx), (π‘Ž ∩ (Baseβ€˜π‘€))⟩)))
1917, 18ovmpoga 7558 . . . 4 ((π‘Š ∈ V ∧ 𝐴 ∈ V ∧ if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)) ∈ V) β†’ (π‘Š β†Ύs 𝐴) = if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
207, 19mpd3an3 1462 . . 3 ((π‘Š ∈ V ∧ 𝐴 ∈ V) β†’ (π‘Š β†Ύs 𝐴) = if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
212, 3, 20syl2an 596 . 2 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ (π‘Š β†Ύs 𝐴) = if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
221, 21eqtrid 2784 1 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ 𝑅 = if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ∩ cin 3946   βŠ† wss 3947  ifcif 4527  βŸ¨cop 4633  β€˜cfv 6540  (class class class)co 7405   sSet csts 17092  ndxcnx 17122  Basecbs 17140   β†Ύs cress 17169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-ress 17170
This theorem is referenced by:  ressid2  17173  ressval2  17174  wunress  17191  wunressOLD  17192
  Copyright terms: Public domain W3C validator