MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resseqnbas Structured version   Visualization version   GIF version

Theorem resseqnbas 17221
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (π‘Š β†Ύs 𝐴)
resseqnbas.e 𝐢 = (πΈβ€˜π‘Š)
resseqnbas.f 𝐸 = Slot (πΈβ€˜ndx)
resseqnbas.n (πΈβ€˜ndx) β‰  (Baseβ€˜ndx)
Assertion
Ref Expression
resseqnbas (𝐴 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘…))

Proof of Theorem resseqnbas
StepHypRef Expression
1 resseqnbas.e . 2 𝐢 = (πΈβ€˜π‘Š)
2 resseqnbas.r . . . . . . 7 𝑅 = (π‘Š β†Ύs 𝐴)
3 eqid 2725 . . . . . . 7 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
42, 3ressid2 17212 . . . . . 6 (((Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = π‘Š)
54fveq2d 6898 . . . . 5 (((Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
653expib 1119 . . . 4 ((Baseβ€˜π‘Š) βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š)))
72, 3ressval2 17213 . . . . . . 7 ((Β¬ (Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
87fveq2d 6898 . . . . . 6 ((Β¬ (Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩)))
9 resseqnbas.f . . . . . . 7 𝐸 = Slot (πΈβ€˜ndx)
10 resseqnbas.n . . . . . . 7 (πΈβ€˜ndx) β‰  (Baseβ€˜ndx)
119, 10setsnid 17177 . . . . . 6 (πΈβ€˜π‘Š) = (πΈβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
128, 11eqtr4di 2783 . . . . 5 ((Β¬ (Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
13123expib 1119 . . . 4 (Β¬ (Baseβ€˜π‘Š) βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š)))
146, 13pm2.61i 182 . . 3 ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
159str0 17157 . . . . . . 7 βˆ… = (πΈβ€˜βˆ…)
1615eqcomi 2734 . . . . . 6 (πΈβ€˜βˆ…) = βˆ…
17 reldmress 17210 . . . . . 6 Rel dom β†Ύs
1816, 2, 17oveqprc 17160 . . . . 5 (Β¬ π‘Š ∈ V β†’ (πΈβ€˜π‘Š) = (πΈβ€˜π‘…))
1918eqcomd 2731 . . . 4 (Β¬ π‘Š ∈ V β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
2019adantr 479 . . 3 ((Β¬ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
2114, 20pm2.61ian 810 . 2 (𝐴 ∈ 𝑉 β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
221, 21eqtr4id 2784 1 (𝐴 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  Vcvv 3463   ∩ cin 3944   βŠ† wss 3945  βˆ…c0 4323  βŸ¨cop 4635  β€˜cfv 6547  (class class class)co 7417   sSet csts 17131  Slot cslot 17149  ndxcnx 17161  Basecbs 17179   β†Ύs cress 17208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6499  df-fun 6549  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-sets 17132  df-slot 17150  df-ress 17209
This theorem is referenced by:  ressplusg  17270  ressmulr  17287  ressstarv  17288  resssca  17323  ressvsca  17324  ressip  17325  resstset  17345  ressle  17360  ressunif  17382  ressds  17390  resshom  17399  ressco  17400
  Copyright terms: Public domain W3C validator