![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resseqnbas | Structured version Visualization version GIF version |
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
Ref | Expression |
---|---|
resseqnbas.r | β’ π = (π βΎs π΄) |
resseqnbas.e | β’ πΆ = (πΈβπ) |
resseqnbas.f | β’ πΈ = Slot (πΈβndx) |
resseqnbas.n | β’ (πΈβndx) β (Baseβndx) |
Ref | Expression |
---|---|
resseqnbas | β’ (π΄ β π β πΆ = (πΈβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resseqnbas.e | . 2 β’ πΆ = (πΈβπ) | |
2 | resseqnbas.r | . . . . . . 7 β’ π = (π βΎs π΄) | |
3 | eqid 2727 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
4 | 2, 3 | ressid2 17204 | . . . . . 6 β’ (((Baseβπ) β π΄ β§ π β V β§ π΄ β π) β π = π) |
5 | 4 | fveq2d 6895 | . . . . 5 β’ (((Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
6 | 5 | 3expib 1120 | . . . 4 β’ ((Baseβπ) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ))) |
7 | 2, 3 | ressval2 17205 | . . . . . . 7 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β π = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
8 | 7 | fveq2d 6895 | . . . . . 6 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
9 | resseqnbas.f | . . . . . . 7 β’ πΈ = Slot (πΈβndx) | |
10 | resseqnbas.n | . . . . . . 7 β’ (πΈβndx) β (Baseβndx) | |
11 | 9, 10 | setsnid 17169 | . . . . . 6 β’ (πΈβπ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
12 | 8, 11 | eqtr4di 2785 | . . . . 5 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
13 | 12 | 3expib 1120 | . . . 4 β’ (Β¬ (Baseβπ) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ))) |
14 | 6, 13 | pm2.61i 182 | . . 3 β’ ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
15 | 9 | str0 17149 | . . . . . . 7 β’ β = (πΈββ ) |
16 | 15 | eqcomi 2736 | . . . . . 6 β’ (πΈββ ) = β |
17 | reldmress 17202 | . . . . . 6 β’ Rel dom βΎs | |
18 | 16, 2, 17 | oveqprc 17152 | . . . . 5 β’ (Β¬ π β V β (πΈβπ) = (πΈβπ )) |
19 | 18 | eqcomd 2733 | . . . 4 β’ (Β¬ π β V β (πΈβπ ) = (πΈβπ)) |
20 | 19 | adantr 480 | . . 3 β’ ((Β¬ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
21 | 14, 20 | pm2.61ian 811 | . 2 β’ (π΄ β π β (πΈβπ ) = (πΈβπ)) |
22 | 1, 21 | eqtr4id 2786 | 1 β’ (π΄ β π β πΆ = (πΈβπ )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 β wne 2935 Vcvv 3469 β© cin 3943 β wss 3944 β c0 4318 β¨cop 4630 βcfv 6542 (class class class)co 7414 sSet csts 17123 Slot cslot 17141 ndxcnx 17153 Basecbs 17171 βΎs cress 17200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-sets 17124 df-slot 17142 df-ress 17201 |
This theorem is referenced by: ressplusg 17262 ressmulr 17279 ressstarv 17280 resssca 17315 ressvsca 17316 ressip 17317 resstset 17337 ressle 17352 ressunif 17374 ressds 17382 resshom 17391 ressco 17392 |
Copyright terms: Public domain | W3C validator |