MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resseqnbas Structured version   Visualization version   GIF version

Theorem resseqnbas 17212
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (𝑊s 𝐴)
resseqnbas.e 𝐶 = (𝐸𝑊)
resseqnbas.f 𝐸 = Slot (𝐸‘ndx)
resseqnbas.n (𝐸‘ndx) ≠ (Base‘ndx)
Assertion
Ref Expression
resseqnbas (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resseqnbas
StepHypRef Expression
1 resseqnbas.e . 2 𝐶 = (𝐸𝑊)
2 resseqnbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
3 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
42, 3ressid2 17204 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
54fveq2d 6862 . . . . 5 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
653expib 1122 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
72, 3ressval2 17205 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 6862 . . . . . 6 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 resseqnbas.f . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
10 resseqnbas.n . . . . . . 7 (𝐸‘ndx) ≠ (Base‘ndx)
119, 10setsnid 17178 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
128, 11eqtr4di 2782 . . . . 5 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
13123expib 1122 . . . 4 (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
146, 13pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
159str0 17159 . . . . . . 7 ∅ = (𝐸‘∅)
1615eqcomi 2738 . . . . . 6 (𝐸‘∅) = ∅
17 reldmress 17202 . . . . . 6 Rel dom ↾s
1816, 2, 17oveqprc 17162 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = (𝐸𝑅))
1918eqcomd 2735 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
2019adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
2114, 20pm2.61ian 811 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
221, 21eqtr4id 2783 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cin 3913  wss 3914  c0 4296  cop 4595  cfv 6511  (class class class)co 7387   sSet csts 17133  Slot cslot 17151  ndxcnx 17163  Basecbs 17179  s cress 17200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-sets 17134  df-slot 17152  df-ress 17201
This theorem is referenced by:  ressplusg  17254  ressmulr  17270  ressstarv  17271  resssca  17306  ressvsca  17307  ressip  17308  resstset  17328  ressle  17343  ressunif  17365  ressds  17373  resshom  17381  ressco  17382
  Copyright terms: Public domain W3C validator