MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resseqnbas Structured version   Visualization version   GIF version

Theorem resseqnbas 17155
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (𝑊s 𝐴)
resseqnbas.e 𝐶 = (𝐸𝑊)
resseqnbas.f 𝐸 = Slot (𝐸‘ndx)
resseqnbas.n (𝐸‘ndx) ≠ (Base‘ndx)
Assertion
Ref Expression
resseqnbas (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resseqnbas
StepHypRef Expression
1 resseqnbas.e . 2 𝐶 = (𝐸𝑊)
2 resseqnbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
3 eqid 2733 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
42, 3ressid2 17147 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
54fveq2d 6832 . . . . 5 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
653expib 1122 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
72, 3ressval2 17148 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 6832 . . . . . 6 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 resseqnbas.f . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
10 resseqnbas.n . . . . . . 7 (𝐸‘ndx) ≠ (Base‘ndx)
119, 10setsnid 17121 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
128, 11eqtr4di 2786 . . . . 5 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
13123expib 1122 . . . 4 (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
146, 13pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
159str0 17102 . . . . . . 7 ∅ = (𝐸‘∅)
1615eqcomi 2742 . . . . . 6 (𝐸‘∅) = ∅
17 reldmress 17145 . . . . . 6 Rel dom ↾s
1816, 2, 17oveqprc 17105 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = (𝐸𝑅))
1918eqcomd 2739 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
2019adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
2114, 20pm2.61ian 811 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
221, 21eqtr4id 2787 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cin 3897  wss 3898  c0 4282  cop 4581  cfv 6486  (class class class)co 7352   sSet csts 17076  Slot cslot 17094  ndxcnx 17106  Basecbs 17122  s cress 17143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-sets 17077  df-slot 17095  df-ress 17144
This theorem is referenced by:  ressplusg  17197  ressmulr  17213  ressstarv  17214  resssca  17249  ressvsca  17250  ressip  17251  resstset  17271  ressle  17286  ressunif  17308  ressds  17316  resshom  17324  ressco  17325
  Copyright terms: Public domain W3C validator