MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resseqnbas Structured version   Visualization version   GIF version

Theorem resseqnbas 17287
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (𝑊s 𝐴)
resseqnbas.e 𝐶 = (𝐸𝑊)
resseqnbas.f 𝐸 = Slot (𝐸‘ndx)
resseqnbas.n (𝐸‘ndx) ≠ (Base‘ndx)
Assertion
Ref Expression
resseqnbas (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resseqnbas
StepHypRef Expression
1 resseqnbas.e . 2 𝐶 = (𝐸𝑊)
2 resseqnbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
3 eqid 2737 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
42, 3ressid2 17278 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
54fveq2d 6910 . . . . 5 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
653expib 1123 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
72, 3ressval2 17279 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 6910 . . . . . 6 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 resseqnbas.f . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
10 resseqnbas.n . . . . . . 7 (𝐸‘ndx) ≠ (Base‘ndx)
119, 10setsnid 17245 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
128, 11eqtr4di 2795 . . . . 5 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
13123expib 1123 . . . 4 (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
146, 13pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
159str0 17226 . . . . . . 7 ∅ = (𝐸‘∅)
1615eqcomi 2746 . . . . . 6 (𝐸‘∅) = ∅
17 reldmress 17276 . . . . . 6 Rel dom ↾s
1816, 2, 17oveqprc 17229 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = (𝐸𝑅))
1918eqcomd 2743 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
2019adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
2114, 20pm2.61ian 812 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
221, 21eqtr4id 2796 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cin 3950  wss 3951  c0 4333  cop 4632  cfv 6561  (class class class)co 7431   sSet csts 17200  Slot cslot 17218  ndxcnx 17230  Basecbs 17247  s cress 17274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sets 17201  df-slot 17219  df-ress 17275
This theorem is referenced by:  ressplusg  17334  ressmulr  17351  ressstarv  17352  resssca  17387  ressvsca  17388  ressip  17389  resstset  17409  ressle  17424  ressunif  17446  ressds  17454  resshom  17463  ressco  17464
  Copyright terms: Public domain W3C validator