![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resseqnbas | Structured version Visualization version GIF version |
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
Ref | Expression |
---|---|
resseqnbas.r | β’ π = (π βΎs π΄) |
resseqnbas.e | β’ πΆ = (πΈβπ) |
resseqnbas.f | β’ πΈ = Slot (πΈβndx) |
resseqnbas.n | β’ (πΈβndx) β (Baseβndx) |
Ref | Expression |
---|---|
resseqnbas | β’ (π΄ β π β πΆ = (πΈβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resseqnbas.e | . 2 β’ πΆ = (πΈβπ) | |
2 | resseqnbas.r | . . . . . . 7 β’ π = (π βΎs π΄) | |
3 | eqid 2725 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
4 | 2, 3 | ressid2 17212 | . . . . . 6 β’ (((Baseβπ) β π΄ β§ π β V β§ π΄ β π) β π = π) |
5 | 4 | fveq2d 6898 | . . . . 5 β’ (((Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
6 | 5 | 3expib 1119 | . . . 4 β’ ((Baseβπ) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ))) |
7 | 2, 3 | ressval2 17213 | . . . . . . 7 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β π = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
8 | 7 | fveq2d 6898 | . . . . . 6 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
9 | resseqnbas.f | . . . . . . 7 β’ πΈ = Slot (πΈβndx) | |
10 | resseqnbas.n | . . . . . . 7 β’ (πΈβndx) β (Baseβndx) | |
11 | 9, 10 | setsnid 17177 | . . . . . 6 β’ (πΈβπ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
12 | 8, 11 | eqtr4di 2783 | . . . . 5 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
13 | 12 | 3expib 1119 | . . . 4 β’ (Β¬ (Baseβπ) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ))) |
14 | 6, 13 | pm2.61i 182 | . . 3 β’ ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
15 | 9 | str0 17157 | . . . . . . 7 β’ β = (πΈββ ) |
16 | 15 | eqcomi 2734 | . . . . . 6 β’ (πΈββ ) = β |
17 | reldmress 17210 | . . . . . 6 β’ Rel dom βΎs | |
18 | 16, 2, 17 | oveqprc 17160 | . . . . 5 β’ (Β¬ π β V β (πΈβπ) = (πΈβπ )) |
19 | 18 | eqcomd 2731 | . . . 4 β’ (Β¬ π β V β (πΈβπ ) = (πΈβπ)) |
20 | 19 | adantr 479 | . . 3 β’ ((Β¬ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
21 | 14, 20 | pm2.61ian 810 | . 2 β’ (π΄ β π β (πΈβπ ) = (πΈβπ)) |
22 | 1, 21 | eqtr4id 2784 | 1 β’ (π΄ β π β πΆ = (πΈβπ )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 Vcvv 3463 β© cin 3944 β wss 3945 β c0 4323 β¨cop 4635 βcfv 6547 (class class class)co 7417 sSet csts 17131 Slot cslot 17149 ndxcnx 17161 Basecbs 17179 βΎs cress 17208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-res 5689 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-sets 17132 df-slot 17150 df-ress 17209 |
This theorem is referenced by: ressplusg 17270 ressmulr 17287 ressstarv 17288 resssca 17323 ressvsca 17324 ressip 17325 resstset 17345 ressle 17360 ressunif 17382 ressds 17390 resshom 17399 ressco 17400 |
Copyright terms: Public domain | W3C validator |