Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resseqnbas | Structured version Visualization version GIF version |
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
Ref | Expression |
---|---|
resseqnbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
resseqnbas.e | ⊢ 𝐶 = (𝐸‘𝑊) |
resseqnbas.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
resseqnbas.n | ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
Ref | Expression |
---|---|
resseqnbas | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resseqnbas.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
2 | resseqnbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 2, 3 | ressid2 16945 | . . . . . 6 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
5 | 4 | fveq2d 6778 | . . . . 5 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
6 | 5 | 3expib 1121 | . . . 4 ⊢ ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
7 | 2, 3 | ressval2 16946 | . . . . . . 7 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
8 | 7 | fveq2d 6778 | . . . . . 6 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
9 | resseqnbas.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
10 | resseqnbas.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) | |
11 | 9, 10 | setsnid 16910 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
12 | 8, 11 | eqtr4di 2796 | . . . . 5 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
13 | 12 | 3expib 1121 | . . . 4 ⊢ (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
14 | 6, 13 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
15 | 9 | str0 16890 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
16 | 15 | eqcomi 2747 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
17 | reldmress 16943 | . . . . . 6 ⊢ Rel dom ↾s | |
18 | 16, 2, 17 | oveqprc 16893 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
19 | 18 | eqcomd 2744 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
20 | 19 | adantr 481 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
21 | 14, 20 | pm2.61ian 809 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
22 | 1, 21 | eqtr4id 2797 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 〈cop 4567 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 Slot cslot 16882 ndxcnx 16894 Basecbs 16912 ↾s cress 16941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-sets 16865 df-slot 16883 df-ress 16942 |
This theorem is referenced by: ressplusg 17000 ressmulr 17017 ressstarv 17018 resssca 17053 ressvsca 17054 ressip 17055 resstset 17075 ressle 17090 ressunif 17112 ressds 17120 resshom 17129 ressco 17130 |
Copyright terms: Public domain | W3C validator |