| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resseqnbas | Structured version Visualization version GIF version | ||
| Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| Ref | Expression |
|---|---|
| resseqnbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| resseqnbas.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resseqnbas.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| resseqnbas.n | ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
| Ref | Expression |
|---|---|
| resseqnbas | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resseqnbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 3 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | ressid2 17256 | . . . . . 6 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 5 | 4 | fveq2d 6890 | . . . . 5 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 6 | 5 | 3expib 1122 | . . . 4 ⊢ ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 7 | 2, 3 | ressval2 17257 | . . . . . . 7 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 8 | 7 | fveq2d 6890 | . . . . . 6 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 9 | resseqnbas.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 10 | resseqnbas.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) | |
| 11 | 9, 10 | setsnid 17227 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 12 | 8, 11 | eqtr4di 2787 | . . . . 5 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 13 | 12 | 3expib 1122 | . . . 4 ⊢ (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 14 | 6, 13 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 15 | 9 | str0 17208 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
| 16 | 15 | eqcomi 2743 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
| 17 | reldmress 17254 | . . . . . 6 ⊢ Rel dom ↾s | |
| 18 | 16, 2, 17 | oveqprc 17211 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
| 19 | 18 | eqcomd 2740 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 21 | 14, 20 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 22 | 1, 21 | eqtr4id 2788 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 〈cop 4612 ‘cfv 6541 (class class class)co 7413 sSet csts 17182 Slot cslot 17200 ndxcnx 17212 Basecbs 17229 ↾s cress 17252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-sets 17183 df-slot 17201 df-ress 17253 |
| This theorem is referenced by: ressplusg 17307 ressmulr 17323 ressstarv 17324 resssca 17359 ressvsca 17360 ressip 17361 resstset 17381 ressle 17396 ressunif 17418 ressds 17426 resshom 17434 ressco 17435 |
| Copyright terms: Public domain | W3C validator |