| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resseqnbas | Structured version Visualization version GIF version | ||
| Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| Ref | Expression |
|---|---|
| resseqnbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| resseqnbas.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resseqnbas.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| resseqnbas.n | ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
| Ref | Expression |
|---|---|
| resseqnbas | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resseqnbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 3 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | ressid2 17278 | . . . . . 6 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 5 | 4 | fveq2d 6910 | . . . . 5 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 6 | 5 | 3expib 1123 | . . . 4 ⊢ ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 7 | 2, 3 | ressval2 17279 | . . . . . . 7 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 8 | 7 | fveq2d 6910 | . . . . . 6 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 9 | resseqnbas.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 10 | resseqnbas.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) | |
| 11 | 9, 10 | setsnid 17245 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 12 | 8, 11 | eqtr4di 2795 | . . . . 5 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 13 | 12 | 3expib 1123 | . . . 4 ⊢ (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 14 | 6, 13 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 15 | 9 | str0 17226 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
| 16 | 15 | eqcomi 2746 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
| 17 | reldmress 17276 | . . . . . 6 ⊢ Rel dom ↾s | |
| 18 | 16, 2, 17 | oveqprc 17229 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
| 19 | 18 | eqcomd 2743 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 21 | 14, 20 | pm2.61ian 812 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 22 | 1, 21 | eqtr4id 2796 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 〈cop 4632 ‘cfv 6561 (class class class)co 7431 sSet csts 17200 Slot cslot 17218 ndxcnx 17230 Basecbs 17247 ↾s cress 17274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-sets 17201 df-slot 17219 df-ress 17275 |
| This theorem is referenced by: ressplusg 17334 ressmulr 17351 ressstarv 17352 resssca 17387 ressvsca 17388 ressip 17389 resstset 17409 ressle 17424 ressunif 17446 ressds 17454 resshom 17463 ressco 17464 |
| Copyright terms: Public domain | W3C validator |