| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resseqnbas | Structured version Visualization version GIF version | ||
| Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| Ref | Expression |
|---|---|
| resseqnbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| resseqnbas.e | ⊢ 𝐶 = (𝐸‘𝑊) |
| resseqnbas.f | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| resseqnbas.n | ⊢ (𝐸‘ndx) ≠ (Base‘ndx) |
| Ref | Expression |
|---|---|
| resseqnbas | ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resseqnbas.e | . 2 ⊢ 𝐶 = (𝐸‘𝑊) | |
| 2 | resseqnbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | ressid2 17147 | . . . . . 6 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 5 | 4 | fveq2d 6832 | . . . . 5 ⊢ (((Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 6 | 5 | 3expib 1122 | . . . 4 ⊢ ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 7 | 2, 3 | ressval2 17148 | . . . . . . 7 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 8 | 7 | fveq2d 6832 | . . . . . 6 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 9 | resseqnbas.f | . . . . . . 7 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 10 | resseqnbas.n | . . . . . . 7 ⊢ (𝐸‘ndx) ≠ (Base‘ndx) | |
| 11 | 9, 10 | setsnid 17121 | . . . . . 6 ⊢ (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) |
| 12 | 8, 11 | eqtr4di 2786 | . . . . 5 ⊢ ((¬ (Base‘𝑊) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 13 | 12 | 3expib 1122 | . . . 4 ⊢ (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊))) |
| 14 | 6, 13 | pm2.61i 182 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 15 | 9 | str0 17102 | . . . . . . 7 ⊢ ∅ = (𝐸‘∅) |
| 16 | 15 | eqcomi 2742 | . . . . . 6 ⊢ (𝐸‘∅) = ∅ |
| 17 | reldmress 17145 | . . . . . 6 ⊢ Rel dom ↾s | |
| 18 | 16, 2, 17 | oveqprc 17105 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑊) = (𝐸‘𝑅)) |
| 19 | 18 | eqcomd 2739 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 21 | 14, 20 | pm2.61ian 811 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑊)) |
| 22 | 1, 21 | eqtr4id 2787 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 〈cop 4581 ‘cfv 6486 (class class class)co 7352 sSet csts 17076 Slot cslot 17094 ndxcnx 17106 Basecbs 17122 ↾s cress 17143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-sets 17077 df-slot 17095 df-ress 17144 |
| This theorem is referenced by: ressplusg 17197 ressmulr 17213 ressstarv 17214 resssca 17249 ressvsca 17250 ressip 17251 resstset 17271 ressle 17286 ressunif 17308 ressds 17316 resshom 17324 ressco 17325 |
| Copyright terms: Public domain | W3C validator |