MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resseqnbas Structured version   Visualization version   GIF version

Theorem resseqnbas 17213
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (π‘Š β†Ύs 𝐴)
resseqnbas.e 𝐢 = (πΈβ€˜π‘Š)
resseqnbas.f 𝐸 = Slot (πΈβ€˜ndx)
resseqnbas.n (πΈβ€˜ndx) β‰  (Baseβ€˜ndx)
Assertion
Ref Expression
resseqnbas (𝐴 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘…))

Proof of Theorem resseqnbas
StepHypRef Expression
1 resseqnbas.e . 2 𝐢 = (πΈβ€˜π‘Š)
2 resseqnbas.r . . . . . . 7 𝑅 = (π‘Š β†Ύs 𝐴)
3 eqid 2727 . . . . . . 7 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
42, 3ressid2 17204 . . . . . 6 (((Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = π‘Š)
54fveq2d 6895 . . . . 5 (((Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
653expib 1120 . . . 4 ((Baseβ€˜π‘Š) βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š)))
72, 3ressval2 17205 . . . . . . 7 ((Β¬ (Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
87fveq2d 6895 . . . . . 6 ((Β¬ (Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩)))
9 resseqnbas.f . . . . . . 7 𝐸 = Slot (πΈβ€˜ndx)
10 resseqnbas.n . . . . . . 7 (πΈβ€˜ndx) β‰  (Baseβ€˜ndx)
119, 10setsnid 17169 . . . . . 6 (πΈβ€˜π‘Š) = (πΈβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘Š))⟩))
128, 11eqtr4di 2785 . . . . 5 ((Β¬ (Baseβ€˜π‘Š) βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
13123expib 1120 . . . 4 (Β¬ (Baseβ€˜π‘Š) βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š)))
146, 13pm2.61i 182 . . 3 ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
159str0 17149 . . . . . . 7 βˆ… = (πΈβ€˜βˆ…)
1615eqcomi 2736 . . . . . 6 (πΈβ€˜βˆ…) = βˆ…
17 reldmress 17202 . . . . . 6 Rel dom β†Ύs
1816, 2, 17oveqprc 17152 . . . . 5 (Β¬ π‘Š ∈ V β†’ (πΈβ€˜π‘Š) = (πΈβ€˜π‘…))
1918eqcomd 2733 . . . 4 (Β¬ π‘Š ∈ V β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
2019adantr 480 . . 3 ((Β¬ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
2114, 20pm2.61ian 811 . 2 (𝐴 ∈ 𝑉 β†’ (πΈβ€˜π‘…) = (πΈβ€˜π‘Š))
221, 21eqtr4id 2786 1 (𝐴 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  Vcvv 3469   ∩ cin 3943   βŠ† wss 3944  βˆ…c0 4318  βŸ¨cop 4630  β€˜cfv 6542  (class class class)co 7414   sSet csts 17123  Slot cslot 17141  ndxcnx 17153  Basecbs 17171   β†Ύs cress 17200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-res 5684  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-sets 17124  df-slot 17142  df-ress 17201
This theorem is referenced by:  ressplusg  17262  ressmulr  17279  ressstarv  17280  resssca  17315  ressvsca  17316  ressip  17317  resstset  17337  ressle  17352  ressunif  17374  ressds  17382  resshom  17391  ressco  17392
  Copyright terms: Public domain W3C validator