MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resseqnbas Structured version   Visualization version   GIF version

Theorem resseqnbas 17150
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.)
Hypotheses
Ref Expression
resseqnbas.r 𝑅 = (𝑊s 𝐴)
resseqnbas.e 𝐶 = (𝐸𝑊)
resseqnbas.f 𝐸 = Slot (𝐸‘ndx)
resseqnbas.n (𝐸‘ndx) ≠ (Base‘ndx)
Assertion
Ref Expression
resseqnbas (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resseqnbas
StepHypRef Expression
1 resseqnbas.e . 2 𝐶 = (𝐸𝑊)
2 resseqnbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
3 eqid 2731 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
42, 3ressid2 17142 . . . . . 6 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
54fveq2d 6826 . . . . 5 (((Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
653expib 1122 . . . 4 ((Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
72, 3ressval2 17143 . . . . . . 7 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
87fveq2d 6826 . . . . . 6 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
9 resseqnbas.f . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
10 resseqnbas.n . . . . . . 7 (𝐸‘ndx) ≠ (Base‘ndx)
119, 10setsnid 17116 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩))
128, 11eqtr4di 2784 . . . . 5 ((¬ (Base‘𝑊) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
13123expib 1122 . . . 4 (¬ (Base‘𝑊) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
146, 13pm2.61i 182 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
159str0 17097 . . . . . . 7 ∅ = (𝐸‘∅)
1615eqcomi 2740 . . . . . 6 (𝐸‘∅) = ∅
17 reldmress 17140 . . . . . 6 Rel dom ↾s
1816, 2, 17oveqprc 17100 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = (𝐸𝑅))
1918eqcomd 2737 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
2019adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
2114, 20pm2.61ian 811 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
221, 21eqtr4id 2785 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cin 3901  wss 3902  c0 4283  cop 4582  cfv 6481  (class class class)co 7346   sSet csts 17071  Slot cslot 17089  ndxcnx 17101  Basecbs 17117  s cress 17138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sets 17072  df-slot 17090  df-ress 17139
This theorem is referenced by:  ressplusg  17192  ressmulr  17208  ressstarv  17209  resssca  17244  ressvsca  17245  ressip  17246  resstset  17266  ressle  17281  ressunif  17303  ressds  17311  resshom  17319  ressco  17320
  Copyright terms: Public domain W3C validator