![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resseqnbas | Structured version Visualization version GIF version |
Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
Ref | Expression |
---|---|
resseqnbas.r | β’ π = (π βΎs π΄) |
resseqnbas.e | β’ πΆ = (πΈβπ) |
resseqnbas.f | β’ πΈ = Slot (πΈβndx) |
resseqnbas.n | β’ (πΈβndx) β (Baseβndx) |
Ref | Expression |
---|---|
resseqnbas | β’ (π΄ β π β πΆ = (πΈβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resseqnbas.e | . 2 β’ πΆ = (πΈβπ) | |
2 | resseqnbas.r | . . . . . . 7 β’ π = (π βΎs π΄) | |
3 | eqid 2732 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
4 | 2, 3 | ressid2 17176 | . . . . . 6 β’ (((Baseβπ) β π΄ β§ π β V β§ π΄ β π) β π = π) |
5 | 4 | fveq2d 6895 | . . . . 5 β’ (((Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
6 | 5 | 3expib 1122 | . . . 4 β’ ((Baseβπ) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ))) |
7 | 2, 3 | ressval2 17177 | . . . . . . 7 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β π = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
8 | 7 | fveq2d 6895 | . . . . . 6 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
9 | resseqnbas.f | . . . . . . 7 β’ πΈ = Slot (πΈβndx) | |
10 | resseqnbas.n | . . . . . . 7 β’ (πΈβndx) β (Baseβndx) | |
11 | 9, 10 | setsnid 17141 | . . . . . 6 β’ (πΈβπ) = (πΈβ(π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
12 | 8, 11 | eqtr4di 2790 | . . . . 5 β’ ((Β¬ (Baseβπ) β π΄ β§ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
13 | 12 | 3expib 1122 | . . . 4 β’ (Β¬ (Baseβπ) β π΄ β ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ))) |
14 | 6, 13 | pm2.61i 182 | . . 3 β’ ((π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
15 | 9 | str0 17121 | . . . . . . 7 β’ β = (πΈββ ) |
16 | 15 | eqcomi 2741 | . . . . . 6 β’ (πΈββ ) = β |
17 | reldmress 17174 | . . . . . 6 β’ Rel dom βΎs | |
18 | 16, 2, 17 | oveqprc 17124 | . . . . 5 β’ (Β¬ π β V β (πΈβπ) = (πΈβπ )) |
19 | 18 | eqcomd 2738 | . . . 4 β’ (Β¬ π β V β (πΈβπ ) = (πΈβπ)) |
20 | 19 | adantr 481 | . . 3 β’ ((Β¬ π β V β§ π΄ β π) β (πΈβπ ) = (πΈβπ)) |
21 | 14, 20 | pm2.61ian 810 | . 2 β’ (π΄ β π β (πΈβπ ) = (πΈβπ)) |
22 | 1, 21 | eqtr4id 2791 | 1 β’ (π΄ β π β πΆ = (πΈβπ )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 Vcvv 3474 β© cin 3947 β wss 3948 β c0 4322 β¨cop 4634 βcfv 6543 (class class class)co 7408 sSet csts 17095 Slot cslot 17113 ndxcnx 17125 Basecbs 17143 βΎs cress 17172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-sets 17096 df-slot 17114 df-ress 17173 |
This theorem is referenced by: ressplusg 17234 ressmulr 17251 ressstarv 17252 resssca 17287 ressvsca 17288 ressip 17289 resstset 17309 ressle 17324 ressunif 17346 ressds 17354 resshom 17363 ressco 17364 |
Copyright terms: Public domain | W3C validator |