MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1 Structured version   Visualization version   GIF version

Theorem subrg1 20365
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1 𝑆 = (𝑅 β†Ύs 𝐴)
subrg1.2 1 = (1rβ€˜π‘…)
Assertion
Ref Expression
subrg1 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 = (1rβ€˜π‘†))

Proof of Theorem subrg1
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 subrg1.2 . 2 1 = (1rβ€˜π‘…)
2 eqid 2732 . . . . 5 (1rβ€˜π‘…) = (1rβ€˜π‘…)
32subrg1cl 20363 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (1rβ€˜π‘…) ∈ 𝐴)
4 subrg1.1 . . . . 5 𝑆 = (𝑅 β†Ύs 𝐴)
54subrgbas 20364 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜π‘†))
63, 5eleqtrd 2835 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (1rβ€˜π‘…) ∈ (Baseβ€˜π‘†))
7 eqid 2732 . . . . . . . 8 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
87subrgss 20356 . . . . . . 7 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 βŠ† (Baseβ€˜π‘…))
95, 8eqsstrrd 4020 . . . . . 6 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (Baseβ€˜π‘†) βŠ† (Baseβ€˜π‘…))
109sselda 3981 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ (Baseβ€˜π‘†)) β†’ π‘₯ ∈ (Baseβ€˜π‘…))
11 subrgrcl 20360 . . . . . . 7 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
12 eqid 2732 . . . . . . . 8 (.rβ€˜π‘…) = (.rβ€˜π‘…)
137, 12, 2ringidmlem 20078 . . . . . . 7 ((𝑅 ∈ Ring ∧ π‘₯ ∈ (Baseβ€˜π‘…)) β†’ (((1rβ€˜π‘…)(.rβ€˜π‘…)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘…)(1rβ€˜π‘…)) = π‘₯))
1411, 13sylan 580 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ (Baseβ€˜π‘…)) β†’ (((1rβ€˜π‘…)(.rβ€˜π‘…)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘…)(1rβ€˜π‘…)) = π‘₯))
154, 12ressmulr 17248 . . . . . . . . . 10 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘†))
1615oveqd 7422 . . . . . . . . 9 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ ((1rβ€˜π‘…)(.rβ€˜π‘…)π‘₯) = ((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯))
1716eqeq1d 2734 . . . . . . . 8 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (((1rβ€˜π‘…)(.rβ€˜π‘…)π‘₯) = π‘₯ ↔ ((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯) = π‘₯))
1815oveqd 7422 . . . . . . . . 9 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (π‘₯(.rβ€˜π‘…)(1rβ€˜π‘…)) = (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)))
1918eqeq1d 2734 . . . . . . . 8 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ ((π‘₯(.rβ€˜π‘…)(1rβ€˜π‘…)) = π‘₯ ↔ (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)) = π‘₯))
2017, 19anbi12d 631 . . . . . . 7 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ ((((1rβ€˜π‘…)(.rβ€˜π‘…)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘…)(1rβ€˜π‘…)) = π‘₯) ↔ (((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)) = π‘₯)))
2120biimpa 477 . . . . . 6 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ (((1rβ€˜π‘…)(.rβ€˜π‘…)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘…)(1rβ€˜π‘…)) = π‘₯)) β†’ (((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)) = π‘₯))
2214, 21syldan 591 . . . . 5 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ (Baseβ€˜π‘…)) β†’ (((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)) = π‘₯))
2310, 22syldan 591 . . . 4 ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ (Baseβ€˜π‘†)) β†’ (((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)) = π‘₯))
2423ralrimiva 3146 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ βˆ€π‘₯ ∈ (Baseβ€˜π‘†)(((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)) = π‘₯))
254subrgring 20358 . . . 4 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑆 ∈ Ring)
26 eqid 2732 . . . . 5 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
27 eqid 2732 . . . . 5 (.rβ€˜π‘†) = (.rβ€˜π‘†)
28 eqid 2732 . . . . 5 (1rβ€˜π‘†) = (1rβ€˜π‘†)
2926, 27, 28isringid 20081 . . . 4 (𝑆 ∈ Ring β†’ (((1rβ€˜π‘…) ∈ (Baseβ€˜π‘†) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘†)(((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)) = π‘₯)) ↔ (1rβ€˜π‘†) = (1rβ€˜π‘…)))
3025, 29syl 17 . . 3 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (((1rβ€˜π‘…) ∈ (Baseβ€˜π‘†) ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘†)(((1rβ€˜π‘…)(.rβ€˜π‘†)π‘₯) = π‘₯ ∧ (π‘₯(.rβ€˜π‘†)(1rβ€˜π‘…)) = π‘₯)) ↔ (1rβ€˜π‘†) = (1rβ€˜π‘…)))
316, 24, 30mpbi2and 710 . 2 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (1rβ€˜π‘†) = (1rβ€˜π‘…))
321, 31eqtr4id 2791 1 (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 = (1rβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140   β†Ύs cress 17169  .rcmulr 17194  1rcur 19998  Ringcrg 20049  SubRingcsubrg 20351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-subg 18997  df-mgp 19982  df-ur 19999  df-ring 20051  df-subrg 20353
This theorem is referenced by:  subrguss  20370  subrginv  20371  subrgunit  20373  subrgnzr  20377  subsubrg  20382  imadrhmcl  20405  sralmod  20801  gzrngunitlem  21002  zring1  21020  re1r  21157  ressascl  21441  mpl1  21562  subrgmvr  21579  scmatsrng1  22016  scmatmhm  22027  clm1  24580  isclmp  24604  qrng1  27114  subrgchr  32374  ressply1mon1p  32645  evls1maprhm  32747  algextdeglem1  32760  evlsbagval  41135  evlsmaprhm  41139
  Copyright terms: Public domain W3C validator