| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrg1 | Structured version Visualization version GIF version | ||
| Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrg1.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrg1.2 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| subrg1 | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1.2 | . 2 ⊢ 1 = (1r‘𝑅) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 2 | subrg1cl 20496 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
| 4 | subrg1.1 | . . . . 5 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 5 | 4 | subrgbas 20497 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 6 | 3, 5 | eleqtrd 2833 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ (Base‘𝑆)) |
| 7 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | 7 | subrgss 20488 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 9 | 5, 8 | eqsstrrd 3970 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 10 | 9 | sselda 3934 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅)) |
| 11 | subrgrcl 20492 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 12 | eqid 2731 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 7, 12, 2 | ringidmlem 20187 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) |
| 14 | 11, 13 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) |
| 15 | 4, 12 | ressmulr 17211 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 16 | 15 | oveqd 7363 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((1r‘𝑅)(.r‘𝑅)𝑥) = ((1r‘𝑅)(.r‘𝑆)𝑥)) |
| 17 | 16 | eqeq1d 2733 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ↔ ((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥)) |
| 18 | 15 | oveqd 7363 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r‘𝑅)(1r‘𝑅)) = (𝑥(.r‘𝑆)(1r‘𝑅))) |
| 19 | 18 | eqeq1d 2733 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥 ↔ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 20 | 17, 19 | anbi12d 632 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) ↔ (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥))) |
| 21 | 20 | biimpa 476 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 22 | 14, 21 | syldan 591 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 23 | 10, 22 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 24 | 23 | ralrimiva 3124 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 25 | 4 | subrgring 20490 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 26 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 27 | eqid 2731 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 28 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 29 | 26, 27, 28 | isringid 20190 | . . . 4 ⊢ (𝑆 ∈ Ring → (((1r‘𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) ↔ (1r‘𝑆) = (1r‘𝑅))) |
| 30 | 25, 29 | syl 17 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (((1r‘𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) ↔ (1r‘𝑆) = (1r‘𝑅))) |
| 31 | 6, 24, 30 | mpbi2and 712 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑆) = (1r‘𝑅)) |
| 32 | 1, 31 | eqtr4id 2785 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 1rcur 20100 Ringcrg 20152 SubRingcsubrg 20485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-subg 19036 df-mgp 20060 df-ur 20101 df-ring 20154 df-subrg 20486 |
| This theorem is referenced by: subrguss 20503 subrginv 20504 subrgunit 20506 subrgnzr 20510 subsubrg 20514 imadrhmcl 20713 sralmod 21122 gzrngunitlem 21370 zring1 21397 re1r 21551 ressascl 21834 mpl1 21950 subrgmvr 21969 evls1maprhm 22292 scmatsrng1 22439 scmatmhm 22450 clm1 25001 isclmp 25025 qrng1 27561 subrgchr 33202 ressply1mon1p 33529 mplvrpmrhm 33575 algextdeglem4 33731 evlsbagval 42605 evlsmaprhm 42609 |
| Copyright terms: Public domain | W3C validator |