| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrg1 | Structured version Visualization version GIF version | ||
| Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrg1.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrg1.2 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| subrg1 | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1.2 | . 2 ⊢ 1 = (1r‘𝑅) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 2 | subrg1cl 20504 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
| 4 | subrg1.1 | . . . . 5 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 5 | 4 | subrgbas 20505 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 6 | 3, 5 | eleqtrd 2835 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ (Base‘𝑆)) |
| 7 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | 7 | subrgss 20496 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 9 | 5, 8 | eqsstrrd 3966 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 10 | 9 | sselda 3930 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅)) |
| 11 | subrgrcl 20500 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 12 | eqid 2733 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 7, 12, 2 | ringidmlem 20194 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) |
| 14 | 11, 13 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) |
| 15 | 4, 12 | ressmulr 17218 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 16 | 15 | oveqd 7372 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((1r‘𝑅)(.r‘𝑅)𝑥) = ((1r‘𝑅)(.r‘𝑆)𝑥)) |
| 17 | 16 | eqeq1d 2735 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ↔ ((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥)) |
| 18 | 15 | oveqd 7372 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r‘𝑅)(1r‘𝑅)) = (𝑥(.r‘𝑆)(1r‘𝑅))) |
| 19 | 18 | eqeq1d 2735 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥 ↔ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 20 | 17, 19 | anbi12d 632 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) ↔ (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥))) |
| 21 | 20 | biimpa 476 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 22 | 14, 21 | syldan 591 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 23 | 10, 22 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 24 | 23 | ralrimiva 3125 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 25 | 4 | subrgring 20498 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 26 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 27 | eqid 2733 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 28 | eqid 2733 | . . . . 5 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 29 | 26, 27, 28 | isringid 20197 | . . . 4 ⊢ (𝑆 ∈ Ring → (((1r‘𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) ↔ (1r‘𝑆) = (1r‘𝑅))) |
| 30 | 25, 29 | syl 17 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (((1r‘𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) ↔ (1r‘𝑆) = (1r‘𝑅))) |
| 31 | 6, 24, 30 | mpbi2and 712 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑆) = (1r‘𝑅)) |
| 32 | 1, 31 | eqtr4id 2787 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 ↾s cress 17148 .rcmulr 17169 1rcur 20107 Ringcrg 20159 SubRingcsubrg 20493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-subg 19044 df-mgp 20067 df-ur 20108 df-ring 20161 df-subrg 20494 |
| This theorem is referenced by: subrguss 20511 subrginv 20512 subrgunit 20514 subrgnzr 20518 subsubrg 20522 imadrhmcl 20721 sralmod 21130 gzrngunitlem 21378 zring1 21405 re1r 21559 ressascl 21843 mpl1 21958 subrgmvr 21979 evls1maprhm 22311 scmatsrng1 22458 scmatmhm 22469 clm1 25020 isclmp 25044 qrng1 27580 subrgchr 33247 ressply1mon1p 33577 mplvrpmrhm 33640 algextdeglem4 33805 evlsbagval 42727 evlsmaprhm 42731 |
| Copyright terms: Public domain | W3C validator |