MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1 Structured version   Visualization version   GIF version

Theorem subrg1 20467
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1 𝑆 = (𝑅s 𝐴)
subrg1.2 1 = (1r𝑅)
Assertion
Ref Expression
subrg1 (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))

Proof of Theorem subrg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrg1.2 . 2 1 = (1r𝑅)
2 eqid 2729 . . . . 5 (1r𝑅) = (1r𝑅)
32subrg1cl 20465 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
4 subrg1.1 . . . . 5 𝑆 = (𝑅s 𝐴)
54subrgbas 20466 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
63, 5eleqtrd 2830 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ (Base‘𝑆))
7 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
87subrgss 20457 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
95, 8eqsstrrd 3979 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
109sselda 3943 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
11 subrgrcl 20461 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
12 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
137, 12, 2ringidmlem 20153 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥))
1411, 13sylan 580 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥))
154, 12ressmulr 17246 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1615oveqd 7386 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = ((1r𝑅)(.r𝑆)𝑥))
1716eqeq1d 2731 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑆)𝑥) = 𝑥))
1815oveqd 7386 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)(1r𝑅)) = (𝑥(.r𝑆)(1r𝑅)))
1918eqeq1d 2731 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)(1r𝑅)) = 𝑥 ↔ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2017, 19anbi12d 632 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥) ↔ (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)))
2120biimpa 476 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2214, 21syldan 591 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2310, 22syldan 591 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2423ralrimiva 3125 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
254subrgring 20459 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
26 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
27 eqid 2729 . . . . 5 (.r𝑆) = (.r𝑆)
28 eqid 2729 . . . . 5 (1r𝑆) = (1r𝑆)
2926, 27, 28isringid 20156 . . . 4 (𝑆 ∈ Ring → (((1r𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)) ↔ (1r𝑆) = (1r𝑅)))
3025, 29syl 17 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (((1r𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)) ↔ (1r𝑆) = (1r𝑅)))
316, 24, 30mpbi2and 712 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑅))
321, 31eqtr4id 2783 1 (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  .rcmulr 17197  1rcur 20066  Ringcrg 20118  SubRingcsubrg 20454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-subg 19031  df-mgp 20026  df-ur 20067  df-ring 20120  df-subrg 20455
This theorem is referenced by:  subrguss  20472  subrginv  20473  subrgunit  20475  subrgnzr  20479  subsubrg  20483  imadrhmcl  20682  sralmod  21070  gzrngunitlem  21325  zring1  21345  re1r  21498  ressascl  21781  mpl1  21897  subrgmvr  21916  evls1maprhm  22239  scmatsrng1  22386  scmatmhm  22397  clm1  24949  isclmp  24973  qrng1  27509  subrgchr  33161  ressply1mon1p  33510  algextdeglem4  33683  evlsbagval  42527  evlsmaprhm  42531
  Copyright terms: Public domain W3C validator