| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrg1 | Structured version Visualization version GIF version | ||
| Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrg1.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrg1.2 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| subrg1 | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1.2 | . 2 ⊢ 1 = (1r‘𝑅) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 2 | subrg1cl 20489 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
| 4 | subrg1.1 | . . . . 5 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 5 | 4 | subrgbas 20490 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 6 | 3, 5 | eleqtrd 2830 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ (Base‘𝑆)) |
| 7 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | 7 | subrgss 20481 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 9 | 5, 8 | eqsstrrd 3982 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 10 | 9 | sselda 3946 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅)) |
| 11 | subrgrcl 20485 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 7, 12, 2 | ringidmlem 20177 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) |
| 14 | 11, 13 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) |
| 15 | 4, 12 | ressmulr 17270 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 16 | 15 | oveqd 7404 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((1r‘𝑅)(.r‘𝑅)𝑥) = ((1r‘𝑅)(.r‘𝑆)𝑥)) |
| 17 | 16 | eqeq1d 2731 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ↔ ((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥)) |
| 18 | 15 | oveqd 7404 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r‘𝑅)(1r‘𝑅)) = (𝑥(.r‘𝑆)(1r‘𝑅))) |
| 19 | 18 | eqeq1d 2731 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥 ↔ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 20 | 17, 19 | anbi12d 632 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) ↔ (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥))) |
| 21 | 20 | biimpa 476 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 22 | 14, 21 | syldan 591 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 23 | 10, 22 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 24 | 23 | ralrimiva 3125 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 25 | 4 | subrgring 20483 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 26 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 27 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 28 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 29 | 26, 27, 28 | isringid 20180 | . . . 4 ⊢ (𝑆 ∈ Ring → (((1r‘𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) ↔ (1r‘𝑆) = (1r‘𝑅))) |
| 30 | 25, 29 | syl 17 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (((1r‘𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) ↔ (1r‘𝑆) = (1r‘𝑅))) |
| 31 | 6, 24, 30 | mpbi2and 712 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑆) = (1r‘𝑅)) |
| 32 | 1, 31 | eqtr4id 2783 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 1rcur 20090 Ringcrg 20142 SubRingcsubrg 20478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-subg 19055 df-mgp 20050 df-ur 20091 df-ring 20144 df-subrg 20479 |
| This theorem is referenced by: subrguss 20496 subrginv 20497 subrgunit 20499 subrgnzr 20503 subsubrg 20507 imadrhmcl 20706 sralmod 21094 gzrngunitlem 21349 zring1 21369 re1r 21522 ressascl 21805 mpl1 21921 subrgmvr 21940 evls1maprhm 22263 scmatsrng1 22410 scmatmhm 22421 clm1 24973 isclmp 24997 qrng1 27533 subrgchr 33188 ressply1mon1p 33537 algextdeglem4 33710 evlsbagval 42554 evlsmaprhm 42558 |
| Copyright terms: Public domain | W3C validator |