| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrg1 | Structured version Visualization version GIF version | ||
| Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrg1.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subrg1.2 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| subrg1 | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1.2 | . 2 ⊢ 1 = (1r‘𝑅) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 2 | subrg1cl 20465 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ 𝐴) |
| 4 | subrg1.1 | . . . . 5 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 5 | 4 | subrgbas 20466 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 6 | 3, 5 | eleqtrd 2830 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑅) ∈ (Base‘𝑆)) |
| 7 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | 7 | subrgss 20457 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 9 | 5, 8 | eqsstrrd 3979 | . . . . . 6 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
| 10 | 9 | sselda 3943 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅)) |
| 11 | subrgrcl 20461 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 13 | 7, 12, 2 | ringidmlem 20153 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) |
| 14 | 11, 13 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) |
| 15 | 4, 12 | ressmulr 17246 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (.r‘𝑅) = (.r‘𝑆)) |
| 16 | 15 | oveqd 7386 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((1r‘𝑅)(.r‘𝑅)𝑥) = ((1r‘𝑅)(.r‘𝑆)𝑥)) |
| 17 | 16 | eqeq1d 2731 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ↔ ((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥)) |
| 18 | 15 | oveqd 7386 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r‘𝑅)(1r‘𝑅)) = (𝑥(.r‘𝑆)(1r‘𝑅))) |
| 19 | 18 | eqeq1d 2731 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥 ↔ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 20 | 17, 19 | anbi12d 632 | . . . . . . 7 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ((((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥) ↔ (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥))) |
| 21 | 20 | biimpa 476 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ (((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑅)(1r‘𝑅)) = 𝑥)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 22 | 14, 21 | syldan 591 | . . . . 5 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 23 | 10, 22 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → (((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 24 | 23 | ralrimiva 3125 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) |
| 25 | 4 | subrgring 20459 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 26 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 27 | eqid 2729 | . . . . 5 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 28 | eqid 2729 | . . . . 5 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 29 | 26, 27, 28 | isringid 20156 | . . . 4 ⊢ (𝑆 ∈ Ring → (((1r‘𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) ↔ (1r‘𝑆) = (1r‘𝑅))) |
| 30 | 25, 29 | syl 17 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (((1r‘𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r‘𝑅)(.r‘𝑆)𝑥) = 𝑥 ∧ (𝑥(.r‘𝑆)(1r‘𝑅)) = 𝑥)) ↔ (1r‘𝑆) = (1r‘𝑅))) |
| 31 | 6, 24, 30 | mpbi2and 712 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (1r‘𝑆) = (1r‘𝑅)) |
| 32 | 1, 31 | eqtr4id 2783 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 1rcur 20066 Ringcrg 20118 SubRingcsubrg 20454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-subg 19031 df-mgp 20026 df-ur 20067 df-ring 20120 df-subrg 20455 |
| This theorem is referenced by: subrguss 20472 subrginv 20473 subrgunit 20475 subrgnzr 20479 subsubrg 20483 imadrhmcl 20682 sralmod 21070 gzrngunitlem 21325 zring1 21345 re1r 21498 ressascl 21781 mpl1 21897 subrgmvr 21916 evls1maprhm 22239 scmatsrng1 22386 scmatmhm 22397 clm1 24949 isclmp 24973 qrng1 27509 subrgchr 33161 ressply1mon1p 33510 algextdeglem4 33683 evlsbagval 42527 evlsmaprhm 42531 |
| Copyright terms: Public domain | W3C validator |