![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version |
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7487. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
reldmress | ⊢ Rel dom ↾s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ress 17288 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
2 | 1 | reldmmpo 7584 | 1 ⊢ Rel dom ↾s |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ifcif 4548 〈cop 4654 dom cdm 5700 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 ndxcnx 17240 Basecbs 17258 ↾s cress 17287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 df-ress 17288 |
This theorem is referenced by: ressbas 17293 ressbasOLD 17294 ressbasssg 17295 ressbasssOLD 17298 resseqnbas 17300 resslemOLD 17301 ress0 17302 ressinbas 17304 ressress 17307 wunress 17309 wunressOLD 17310 subcmn 19879 srasca 21206 srascaOLD 21207 rlmsca2 21229 resstopn 23215 cphsubrglem 25230 submomnd 33060 suborng 33310 |
Copyright terms: Public domain | W3C validator |