![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version |
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7450. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
reldmress | β’ Rel dom βΎs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ress 17176 | . 2 β’ βΎs = (π€ β V, π β V β¦ if((Baseβπ€) β π, π€, (π€ sSet β¨(Baseβndx), (π β© (Baseβπ€))β©))) | |
2 | 1 | reldmmpo 7545 | 1 β’ Rel dom βΎs |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3474 β© cin 3947 β wss 3948 ifcif 4528 β¨cop 4634 dom cdm 5676 Rel wrel 5681 βcfv 6543 (class class class)co 7411 sSet csts 17098 ndxcnx 17128 Basecbs 17146 βΎs cress 17175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-dm 5686 df-oprab 7415 df-mpo 7416 df-ress 17176 |
This theorem is referenced by: ressbas 17181 ressbasOLD 17182 ressbasssg 17183 ressbasssOLD 17186 resseqnbas 17188 resslemOLD 17189 ress0 17190 ressinbas 17192 ressress 17195 wunress 17197 wunressOLD 17198 subcmn 19707 srasca 20804 srascaOLD 20805 rlmsca2 20829 resstopn 22697 cphsubrglem 24701 submomnd 32269 suborng 32474 |
Copyright terms: Public domain | W3C validator |