Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version |
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7306. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
reldmress | ⊢ Rel dom ↾s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ress 16952 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
2 | 1 | reldmmpo 7398 | 1 ⊢ Rel dom ↾s |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3429 ∩ cin 3885 ⊆ wss 3886 ifcif 4459 〈cop 4567 dom cdm 5584 Rel wrel 5589 ‘cfv 6426 (class class class)co 7267 sSet csts 16874 ndxcnx 16904 Basecbs 16922 ↾s cress 16951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5074 df-opab 5136 df-xp 5590 df-rel 5591 df-dm 5594 df-oprab 7271 df-mpo 7272 df-ress 16952 |
This theorem is referenced by: ressbas 16957 ressbasOLD 16958 ressbasss 16960 resseqnbas 16961 resslemOLD 16962 ress0 16963 ressinbas 16965 ressress 16968 wunress 16970 wunressOLD 16971 subcmn 19448 srasca 20457 srascaOLD 20458 rlmsca2 20481 resstopn 22347 cphsubrglem 24351 submomnd 31344 suborng 31522 |
Copyright terms: Public domain | W3C validator |