| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version | ||
| Description: The structure restriction is a proper operator, so it can be used with ovprc1 7392. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| reldmress | ⊢ Rel dom ↾s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ress 17160 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
| 2 | 1 | reldmmpo 7487 | 1 ⊢ Rel dom ↾s |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ifcif 4478 〈cop 4585 dom cdm 5623 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 sSet csts 17092 ndxcnx 17122 Basecbs 17138 ↾s cress 17159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 df-oprab 7357 df-mpo 7358 df-ress 17160 |
| This theorem is referenced by: ressbas 17165 ressbasssg 17166 ressbasssOLD 17169 resseqnbas 17171 ress0 17172 ressinbas 17174 ressress 17176 wunress 17178 subcmn 19734 submomnd 20029 suborng 20779 srasca 21102 rlmsca2 21121 resstopn 23089 cphsubrglem 25093 |
| Copyright terms: Public domain | W3C validator |