MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmress Structured version   Visualization version   GIF version

Theorem reldmress 17161
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7392. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ress 17160 . 2 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
21reldmmpo 7487 1 Rel dom ↾s
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3438  cin 3904  wss 3905  ifcif 4478  cop 4585  dom cdm 5623  Rel wrel 5628  cfv 6486  (class class class)co 7353   sSet csts 17092  ndxcnx 17122  Basecbs 17138  s cress 17159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-dm 5633  df-oprab 7357  df-mpo 7358  df-ress 17160
This theorem is referenced by:  ressbas  17165  ressbasssg  17166  ressbasssOLD  17169  resseqnbas  17171  ress0  17172  ressinbas  17174  ressress  17176  wunress  17178  subcmn  19734  submomnd  20029  suborng  20779  srasca  21102  rlmsca2  21121  resstopn  23089  cphsubrglem  25093
  Copyright terms: Public domain W3C validator