| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version | ||
| Description: The structure restriction is a proper operator, so it can be used with ovprc1 7393. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| reldmress | ⊢ Rel dom ↾s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ress 17146 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
| 2 | 1 | reldmmpo 7488 | 1 ⊢ Rel dom ↾s |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ifcif 4476 〈cop 4583 dom cdm 5621 Rel wrel 5626 ‘cfv 6488 (class class class)co 7354 sSet csts 17078 ndxcnx 17108 Basecbs 17124 ↾s cress 17145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-oprab 7358 df-mpo 7359 df-ress 17146 |
| This theorem is referenced by: ressbas 17151 ressbasssg 17152 ressbasssOLD 17155 resseqnbas 17157 ress0 17158 ressinbas 17160 ressress 17162 wunress 17164 subcmn 19753 submomnd 20048 suborng 20795 srasca 21118 rlmsca2 21137 resstopn 23104 cphsubrglem 25107 |
| Copyright terms: Public domain | W3C validator |