![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version |
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7448. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
reldmress | β’ Rel dom βΎs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ress 17174 | . 2 β’ βΎs = (π€ β V, π β V β¦ if((Baseβπ€) β π, π€, (π€ sSet β¨(Baseβndx), (π β© (Baseβπ€))β©))) | |
2 | 1 | reldmmpo 7543 | 1 β’ Rel dom βΎs |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3475 β© cin 3948 β wss 3949 ifcif 4529 β¨cop 4635 dom cdm 5677 Rel wrel 5682 βcfv 6544 (class class class)co 7409 sSet csts 17096 ndxcnx 17126 Basecbs 17144 βΎs cress 17173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-dm 5687 df-oprab 7413 df-mpo 7414 df-ress 17174 |
This theorem is referenced by: ressbas 17179 ressbasOLD 17180 ressbasssg 17181 ressbasssOLD 17184 resseqnbas 17186 resslemOLD 17187 ress0 17188 ressinbas 17190 ressress 17193 wunress 17195 wunressOLD 17196 subcmn 19705 srasca 20798 srascaOLD 20799 rlmsca2 20823 resstopn 22690 cphsubrglem 24694 submomnd 32228 suborng 32433 |
Copyright terms: Public domain | W3C validator |