MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmress Structured version   Visualization version   GIF version

Theorem reldmress 17253
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7444. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ress 17252 . 2 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
21reldmmpo 7541 1 Rel dom ↾s
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3459  cin 3925  wss 3926  ifcif 4500  cop 4607  dom cdm 5654  Rel wrel 5659  cfv 6531  (class class class)co 7405   sSet csts 17182  ndxcnx 17212  Basecbs 17228  s cress 17251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-dm 5664  df-oprab 7409  df-mpo 7410  df-ress 17252
This theorem is referenced by:  ressbas  17257  ressbasssg  17258  ressbasssOLD  17261  resseqnbas  17263  ress0  17264  ressinbas  17266  ressress  17268  wunress  17270  subcmn  19818  srasca  21138  rlmsca2  21157  resstopn  23124  cphsubrglem  25129  submomnd  33078  suborng  33337
  Copyright terms: Public domain W3C validator