| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version | ||
| Description: The structure restriction is a proper operator, so it can be used with ovprc1 7426. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| reldmress | ⊢ Rel dom ↾s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ress 17201 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
| 2 | 1 | reldmmpo 7523 | 1 ⊢ Rel dom ↾s |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ifcif 4488 〈cop 4595 dom cdm 5638 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 df-ress 17201 |
| This theorem is referenced by: ressbas 17206 ressbasssg 17207 ressbasssOLD 17210 resseqnbas 17212 ress0 17213 ressinbas 17215 ressress 17217 wunress 17219 subcmn 19767 srasca 21087 rlmsca2 21106 resstopn 23073 cphsubrglem 25077 submomnd 33024 suborng 33293 |
| Copyright terms: Public domain | W3C validator |