| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version | ||
| Description: The structure restriction is a proper operator, so it can be used with ovprc1 7429. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| reldmress | ⊢ Rel dom ↾s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ress 17208 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
| 2 | 1 | reldmmpo 7526 | 1 ⊢ Rel dom ↾s |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ifcif 4491 〈cop 4598 dom cdm 5641 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 Basecbs 17186 ↾s cress 17207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-oprab 7394 df-mpo 7395 df-ress 17208 |
| This theorem is referenced by: ressbas 17213 ressbasssg 17214 ressbasssOLD 17217 resseqnbas 17219 ress0 17220 ressinbas 17222 ressress 17224 wunress 17226 subcmn 19774 srasca 21094 rlmsca2 21113 resstopn 23080 cphsubrglem 25084 submomnd 33031 suborng 33300 |
| Copyright terms: Public domain | W3C validator |