| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version | ||
| Description: The structure restriction is a proper operator, so it can be used with ovprc1 7444. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| reldmress | ⊢ Rel dom ↾s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ress 17252 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
| 2 | 1 | reldmmpo 7541 | 1 ⊢ Rel dom ↾s |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ifcif 4500 〈cop 4607 dom cdm 5654 Rel wrel 5659 ‘cfv 6531 (class class class)co 7405 sSet csts 17182 ndxcnx 17212 Basecbs 17228 ↾s cress 17251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-oprab 7409 df-mpo 7410 df-ress 17252 |
| This theorem is referenced by: ressbas 17257 ressbasssg 17258 ressbasssOLD 17261 resseqnbas 17263 ress0 17264 ressinbas 17266 ressress 17268 wunress 17270 subcmn 19818 srasca 21138 rlmsca2 21157 resstopn 23124 cphsubrglem 25129 submomnd 33078 suborng 33337 |
| Copyright terms: Public domain | W3C validator |