MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmress Structured version   Visualization version   GIF version

Theorem reldmress 17209
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7429. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ress 17208 . 2 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
21reldmmpo 7526 1 Rel dom ↾s
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3450  cin 3916  wss 3917  ifcif 4491  cop 4598  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390   sSet csts 17140  ndxcnx 17170  Basecbs 17186  s cress 17207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dm 5651  df-oprab 7394  df-mpo 7395  df-ress 17208
This theorem is referenced by:  ressbas  17213  ressbasssg  17214  ressbasssOLD  17217  resseqnbas  17219  ress0  17220  ressinbas  17222  ressress  17224  wunress  17226  subcmn  19774  srasca  21094  rlmsca2  21113  resstopn  23080  cphsubrglem  25084  submomnd  33031  suborng  33300
  Copyright terms: Public domain W3C validator