![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version |
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7470. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
reldmress | ⊢ Rel dom ↾s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ress 17275 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
2 | 1 | reldmmpo 7567 | 1 ⊢ Rel dom ↾s |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ifcif 4531 〈cop 4637 dom cdm 5689 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 sSet csts 17197 ndxcnx 17227 Basecbs 17245 ↾s cress 17274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-oprab 7435 df-mpo 7436 df-ress 17275 |
This theorem is referenced by: ressbas 17280 ressbasOLD 17281 ressbasssg 17282 ressbasssOLD 17285 resseqnbas 17287 resslemOLD 17288 ress0 17289 ressinbas 17291 ressress 17294 wunress 17296 wunressOLD 17297 subcmn 19870 srasca 21201 srascaOLD 21202 rlmsca2 21224 resstopn 23210 cphsubrglem 25225 submomnd 33070 suborng 33325 |
Copyright terms: Public domain | W3C validator |