MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmress Structured version   Visualization version   GIF version

Theorem reldmress 17143
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7385. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ress 17142 . 2 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
21reldmmpo 7480 1 Rel dom ↾s
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  cin 3901  wss 3902  ifcif 4475  cop 4582  dom cdm 5616  Rel wrel 5621  cfv 6481  (class class class)co 7346   sSet csts 17074  ndxcnx 17104  Basecbs 17120  s cress 17141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-dm 5626  df-oprab 7350  df-mpo 7351  df-ress 17142
This theorem is referenced by:  ressbas  17147  ressbasssg  17148  ressbasssOLD  17151  resseqnbas  17153  ress0  17154  ressinbas  17156  ressress  17158  wunress  17160  subcmn  19750  submomnd  20045  suborng  20792  srasca  21115  rlmsca2  21134  resstopn  23102  cphsubrglem  25105
  Copyright terms: Public domain W3C validator