MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmress Structured version   Visualization version   GIF version

Theorem reldmress 17147
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7393. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ress 17146 . 2 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
21reldmmpo 7488 1 Rel dom ↾s
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3437  cin 3897  wss 3898  ifcif 4476  cop 4583  dom cdm 5621  Rel wrel 5626  cfv 6488  (class class class)co 7354   sSet csts 17078  ndxcnx 17108  Basecbs 17124  s cress 17145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-dm 5631  df-oprab 7358  df-mpo 7359  df-ress 17146
This theorem is referenced by:  ressbas  17151  ressbasssg  17152  ressbasssOLD  17155  resseqnbas  17157  ress0  17158  ressinbas  17160  ressress  17162  wunress  17164  subcmn  19753  submomnd  20048  suborng  20795  srasca  21118  rlmsca2  21137  resstopn  23104  cphsubrglem  25107
  Copyright terms: Public domain W3C validator