MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmress Structured version   Visualization version   GIF version

Theorem reldmress 16953
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7306. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Assertion
Ref Expression
reldmress Rel dom ↾s

Proof of Theorem reldmress
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ress 16952 . 2 s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑎 ∩ (Base‘𝑤))⟩)))
21reldmmpo 7398 1 Rel dom ↾s
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3429  cin 3885  wss 3886  ifcif 4459  cop 4567  dom cdm 5584  Rel wrel 5589  cfv 6426  (class class class)co 7267   sSet csts 16874  ndxcnx 16904  Basecbs 16922  s cress 16951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5074  df-opab 5136  df-xp 5590  df-rel 5591  df-dm 5594  df-oprab 7271  df-mpo 7272  df-ress 16952
This theorem is referenced by:  ressbas  16957  ressbasOLD  16958  ressbasss  16960  resseqnbas  16961  resslemOLD  16962  ress0  16963  ressinbas  16965  ressress  16968  wunress  16970  wunressOLD  16971  subcmn  19448  srasca  20457  srascaOLD  20458  rlmsca2  20481  resstopn  22347  cphsubrglem  24351  submomnd  31344  suborng  31522
  Copyright terms: Public domain W3C validator