Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmress | Structured version Visualization version GIF version |
Description: The structure restriction is a proper operator, so it can be used with ovprc1 7314. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
reldmress | ⊢ Rel dom ↾s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ress 16942 | . 2 ⊢ ↾s = (𝑤 ∈ V, 𝑎 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑎, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑎 ∩ (Base‘𝑤))〉))) | |
2 | 1 | reldmmpo 7408 | 1 ⊢ Rel dom ↾s |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ifcif 4459 〈cop 4567 dom cdm 5589 Rel wrel 5594 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 ndxcnx 16894 Basecbs 16912 ↾s cress 16941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-oprab 7279 df-mpo 7280 df-ress 16942 |
This theorem is referenced by: ressbas 16947 ressbasOLD 16948 ressbasss 16950 resseqnbas 16951 resslemOLD 16952 ress0 16953 ressinbas 16955 ressress 16958 wunress 16960 wunressOLD 16961 subcmn 19438 srasca 20447 srascaOLD 20448 rlmsca2 20471 resstopn 22337 cphsubrglem 24341 submomnd 31336 suborng 31514 |
Copyright terms: Public domain | W3C validator |