![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version |
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressplusg.2 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
3 | plusgid 17338 | . 2 ⊢ +g = Slot (+g‘ndx) | |
4 | basendxnplusgndx 17341 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
5 | 4 | necomi 3001 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
6 | 1, 2, 3, 5 | resseqnbas 17300 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ndxcnx 17240 Basecbs 17258 ↾s cress 17287 +gcplusg 17311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 |
This theorem is referenced by: issstrmgm 18691 gsumress 18720 issubmgm2 18741 resmgmhm 18749 resmgmhm2 18750 resmgmhm2b 18751 issubmnd 18799 ress0g 18800 submnd0 18801 resmhm 18855 resmhm2 18856 resmhm2b 18857 smndex1mgm 18942 smndex1sgrp 18943 smndex1mnd 18945 smndex1id 18946 ressmulgnn 19116 ressmulgnnd 19118 submmulg 19158 subg0 19172 subginv 19173 subgcl 19176 subgsub 19178 subgmulg 19180 issubg2 19181 nmznsg 19208 resghm 19272 subgga 19340 gasubg 19342 resscntz 19373 symgplusg 19424 sylow2blem2 19663 sylow3lem6 19674 subglsm 19715 pj1ghm 19745 subgabl 19878 subcmn 19879 submcmn2 19881 cntrcmnd 19884 cycsubmcmn 19931 ringidss 20300 opprsubg 20378 unitgrp 20409 unitlinv 20419 unitrinv 20420 invrpropd 20444 rhmunitinv 20537 issubrng2 20584 subrngpropd 20594 subrgugrp 20619 issubrg2 20620 subrgpropd 20636 isdrng2 20765 drngmclOLD 20773 drngid2 20774 isdrngd 20787 isdrngdOLD 20789 cntzsdrg 20825 abvres 20854 islss3 20980 sralmod 21217 rnglidlrng 21280 rngqiprngghmlem3 21322 xrs1mnd 21445 xrs10 21446 xrs1cmn 21447 xrge0subm 21448 cnmsubglem 21471 expmhm 21477 nn0srg 21478 rge0srg 21479 zringplusg 21488 expghm 21509 psgnghm 21621 psgnco 21624 evpmodpmf1o 21637 replusg 21651 phlssphl 21700 frlmplusgval 21807 resspsradd 22018 mplplusg 22050 ressmpladd 22070 mhpmulcl 22176 ply1plusg 22246 ressply1add 22252 evls1addd 22396 mdetralt 22635 invrvald 22703 submtmd 24133 imasdsf1olem 24404 xrge0gsumle 24874 clmadd 25126 isclmp 25149 ipcau2 25287 reefgim 26512 efabl 26610 efsubm 26611 dchrptlem2 27327 dchrsum2 27330 qabvle 27687 padicabv 27692 ostth2lem2 27696 ostth3 27700 ressplusf 32930 xrge0plusg 32999 submomnd 33060 ringinvval 33215 dvrcan5 33216 xrge0slmod 33341 idlinsubrg 33424 zringfrac 33547 drgextlsp 33608 fedgmullem2 33643 algextdeglem8 33715 2sqr3minply 33738 qqhghm 33934 qqhrhm 33935 esumpfinvallem 34038 lcdvadd 41554 primrootsunit1 42054 aks6d1c6isolem2 42132 mhphflem 42551 deg1mhm 43161 sge0tsms 46301 cnfldsrngadd 47885 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |