| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusg.2 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | plusgid 17207 | . 2 ⊢ +g = Slot (+g‘ndx) | |
| 4 | basendxnplusgndx 17210 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2979 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | 1, 2, 3, 5 | resseqnbas 17172 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ndxcnx 17123 Basecbs 17139 ↾s cress 17160 +gcplusg 17180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 |
| This theorem is referenced by: issstrmgm 18546 gsumress 18575 issubmgm2 18596 resmgmhm 18604 resmgmhm2 18605 resmgmhm2b 18606 issubmnd 18654 ress0g 18655 submnd0 18656 resmhm 18713 resmhm2 18714 resmhm2b 18715 smndex1mgm 18800 smndex1sgrp 18801 smndex1mnd 18803 smndex1id 18804 ressmulgnn 18974 ressmulgnnd 18976 submmulg 19016 subg0 19030 subginv 19031 subgcl 19034 subgsub 19036 subgmulg 19038 issubg2 19039 nmznsg 19066 resghm 19130 subgga 19198 gasubg 19200 resscntz 19231 symgplusg 19281 sylow2blem2 19519 sylow3lem6 19530 subglsm 19571 pj1ghm 19601 subgabl 19734 subcmn 19735 submcmn2 19737 cntrcmnd 19740 cycsubmcmn 19787 submomnd 20030 ringidss 20181 opprsubg 20256 unitgrp 20287 unitlinv 20297 unitrinv 20298 invrpropd 20322 rhmunitinv 20415 issubrng2 20462 subrngpropd 20472 subrgugrp 20495 issubrg2 20496 subrgpropd 20512 isdrng2 20647 drngmclOLD 20655 drngid2 20656 isdrngd 20669 isdrngdOLD 20671 cntzsdrg 20706 abvres 20735 islss3 20881 sralmod 21110 rnglidlrng 21173 rngqiprngghmlem3 21215 cnmsubglem 21356 expmhm 21362 nn0srg 21363 rge0srg 21364 xrge0plusg 21365 xrs1mnd 21366 xrs10 21367 xrs1cmn 21368 xrge0subm 21369 zringplusg 21380 expghm 21401 psgnghm 21506 psgnco 21509 evpmodpmf1o 21522 replusg 21536 phlssphl 21585 frlmplusgval 21690 resspsradd 21901 mplplusg 21933 ressmpladd 21953 mhpmulcl 22053 ply1plusg 22125 ressply1add 22131 evls1addd 22275 mdetralt 22512 invrvald 22580 submtmd 24008 imasdsf1olem 24278 xrge0gsumle 24739 clmadd 24991 isclmp 25014 ipcau2 25151 reefgim 26377 efabl 26476 efsubm 26477 dchrptlem2 27193 dchrsum2 27196 qabvle 27553 padicabv 27558 ostth2lem2 27562 ostth3 27566 ressplusf 32924 ringinvval 33194 dvrcan5 33195 xrge0slmod 33304 idlinsubrg 33387 zringfrac 33510 drgextlsp 33579 fedgmullem2 33616 algextdeglem8 33710 2sqr3minply 33766 cos9thpiminply 33774 qqhghm 33974 qqhrhm 33975 esumpfinvallem 34060 lcdvadd 41596 primrootsunit1 42090 aks6d1c6isolem2 42168 mhphflem 42589 deg1mhm 43193 sge0tsms 46381 cnfldsrngadd 48166 amgmlemALT 49808 |
| Copyright terms: Public domain | W3C validator |