Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version |
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressplusg.2 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
3 | plusgid 16989 | . 2 ⊢ +g = Slot (+g‘ndx) | |
4 | basendxnplusgndx 16992 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
5 | 4 | necomi 2998 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
6 | 1, 2, 3, 5 | resseqnbas 16951 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ndxcnx 16894 Basecbs 16912 ↾s cress 16941 +gcplusg 16962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 |
This theorem is referenced by: issstrmgm 18337 gsumress 18366 issubmnd 18412 ress0g 18413 submnd0 18414 resmhm 18459 resmhm2 18460 resmhm2b 18461 smndex1mgm 18546 smndex1sgrp 18547 smndex1mnd 18549 smndex1id 18550 submmulg 18747 subg0 18761 subginv 18762 subgcl 18765 subgsub 18767 subgmulg 18769 issubg2 18770 nmznsg 18796 resghm 18850 subgga 18906 gasubg 18908 resscntz 18938 symgplusg 18990 sylow2blem2 19226 sylow3lem6 19237 subglsm 19279 pj1ghm 19309 subgabl 19437 subcmn 19438 submcmn2 19440 cntrcmnd 19443 cycsubmcmn 19489 ringidss 19816 opprsubg 19878 unitgrp 19909 unitlinv 19919 unitrinv 19920 invrpropd 19940 isdrng2 20001 drngmcl 20004 drngid2 20007 isdrngd 20016 subrgugrp 20043 issubrg2 20044 subrgpropd 20059 cntzsdrg 20070 abvres 20099 islss3 20221 sralmod 20457 xrs1mnd 20636 xrs10 20637 xrs1cmn 20638 xrge0subm 20639 cnmsubglem 20661 expmhm 20667 nn0srg 20668 rge0srg 20669 zringplusg 20677 expghm 20697 psgnghm 20785 psgnco 20788 evpmodpmf1o 20801 replusg 20815 phlssphl 20864 frlmplusgval 20971 resspsradd 21185 mpladd 21213 ressmpladd 21230 mhpmulcl 21339 mplplusg 21391 ply1plusg 21396 ressply1add 21401 mdetralt 21757 invrvald 21825 submtmd 23255 imasdsf1olem 23526 xrge0gsumle 23996 clmadd 24237 isclmp 24260 ipcau2 24398 reefgim 25609 efabl 25706 efsubm 25707 dchrptlem2 26413 dchrsum2 26416 qabvle 26773 padicabv 26778 ostth2lem2 26782 ostth3 26786 ressplusf 31235 ressmulgnn 31292 xrge0plusg 31296 submomnd 31336 ringinvval 31489 dvrcan5 31490 rhmunitinv 31521 xrge0slmod 31548 idlinsubrg 31608 drgextlsp 31681 fedgmullem2 31711 qqhghm 31938 qqhrhm 31939 esumpfinvallem 32042 lcdvadd 39611 mhphflem 40284 deg1mhm 41032 sge0tsms 43918 cnfldsrngadd 45324 issubmgm2 45344 resmgmhm 45352 resmgmhm2 45353 resmgmhm2b 45354 lidlrng 45485 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |