Colors of
variables: wff
setvar class |
Syntax hints:
β wi 4 = wceq 1539
β wcel 2104 βcfv 6542 (class class class)co 7411
ndxcnx 17130 Basecbs 17148
βΎs cress 17177 +gcplusg 17201 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279
df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 |
This theorem is referenced by: issstrmgm
18578 gsumress
18607 issubmgm2
18628 resmgmhm
18636 resmgmhm2
18637 resmgmhm2b
18638 issubmnd
18686 ress0g
18687 submnd0
18688 resmhm
18737 resmhm2
18738 resmhm2b
18739 smndex1mgm
18824 smndex1sgrp
18825 smndex1mnd
18827 smndex1id
18828 submmulg
19034 subg0
19048 subginv
19049 subgcl
19052 subgsub
19054 subgmulg
19056 issubg2
19057 nmznsg
19084 resghm
19146 subgga
19205 gasubg
19207 resscntz
19238 symgplusg
19291 sylow2blem2
19530 sylow3lem6
19541 subglsm
19582 pj1ghm
19612 subgabl
19745 subcmn
19746 submcmn2
19748 cntrcmnd
19751 cycsubmcmn
19798 ringidss
20165 opprsubg
20243 unitgrp
20274 unitlinv
20284 unitrinv
20285 invrpropd
20309 rhmunitinv
20402 issubrng2
20446 subrngpropd
20456 subrgugrp
20481 issubrg2
20482 subrgpropd
20498 isdrng2
20514 drngmcl
20517 drngid2
20521 isdrngd
20533 isdrngdOLD
20535 cntzsdrg
20561 abvres
20590 islss3
20714 sralmod
20954 rnglidlrng
21036 rngqiprngghmlem3
21048 xrs1mnd
21183 xrs10
21184 xrs1cmn
21185 xrge0subm
21186 cnmsubglem
21208 expmhm
21214 nn0srg
21215 rge0srg
21216 zringplusg
21225 expghm
21246 psgnghm
21352 psgnco
21355 evpmodpmf1o
21368 replusg
21382 phlssphl
21431 frlmplusgval
21538 resspsradd
21755 mplplusg
21785 ressmpladd
21803 mhpmulcl
21911 ply1plusg
21966 ressply1add
21972 mdetralt
22330 invrvald
22398 submtmd
23828 imasdsf1olem
24099 xrge0gsumle
24569 clmadd
24821 isclmp
24844 ipcau2
24982 reefgim
26198 efabl
26295 efsubm
26296 dchrptlem2
27004 dchrsum2
27007 qabvle
27364 padicabv
27369 ostth2lem2
27373 ostth3
27377 ressplusf
32394 ressmulgnn
32451 xrge0plusg
32455 submomnd
32498 ringinvval
32654 dvrcan5
32655 xrge0slmod
32733 idlinsubrg
32823 evls1addd
32922 drgextlsp
32968 fedgmullem2
33003 algextdeglem8
33069 qqhghm
33266 qqhrhm
33267 esumpfinvallem
33370 lcdvadd
40771 mhphflem
41470 deg1mhm
42251 sge0tsms
45394 cnfldsrngadd
46838 amgmlemALT
47937 |