| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusg.2 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | plusgid 17254 | . 2 ⊢ +g = Slot (+g‘ndx) | |
| 4 | basendxnplusgndx 17257 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2980 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | 1, 2, 3, 5 | resseqnbas 17219 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ndxcnx 17170 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 |
| This theorem is referenced by: issstrmgm 18587 gsumress 18616 issubmgm2 18637 resmgmhm 18645 resmgmhm2 18646 resmgmhm2b 18647 issubmnd 18695 ress0g 18696 submnd0 18697 resmhm 18754 resmhm2 18755 resmhm2b 18756 smndex1mgm 18841 smndex1sgrp 18842 smndex1mnd 18844 smndex1id 18845 ressmulgnn 19015 ressmulgnnd 19017 submmulg 19057 subg0 19071 subginv 19072 subgcl 19075 subgsub 19077 subgmulg 19079 issubg2 19080 nmznsg 19107 resghm 19171 subgga 19239 gasubg 19241 resscntz 19272 symgplusg 19320 sylow2blem2 19558 sylow3lem6 19569 subglsm 19610 pj1ghm 19640 subgabl 19773 subcmn 19774 submcmn2 19776 cntrcmnd 19779 cycsubmcmn 19826 ringidss 20193 opprsubg 20268 unitgrp 20299 unitlinv 20309 unitrinv 20310 invrpropd 20334 rhmunitinv 20427 issubrng2 20474 subrngpropd 20484 subrgugrp 20507 issubrg2 20508 subrgpropd 20524 isdrng2 20659 drngmclOLD 20667 drngid2 20668 isdrngd 20681 isdrngdOLD 20683 cntzsdrg 20718 abvres 20747 islss3 20872 sralmod 21101 rnglidlrng 21164 rngqiprngghmlem3 21206 xrs1mnd 21328 xrs10 21329 xrs1cmn 21330 xrge0subm 21331 cnmsubglem 21354 expmhm 21360 nn0srg 21361 rge0srg 21362 zringplusg 21371 expghm 21392 psgnghm 21496 psgnco 21499 evpmodpmf1o 21512 replusg 21526 phlssphl 21575 frlmplusgval 21680 resspsradd 21891 mplplusg 21923 ressmpladd 21943 mhpmulcl 22043 ply1plusg 22115 ressply1add 22121 evls1addd 22265 mdetralt 22502 invrvald 22570 submtmd 23998 imasdsf1olem 24268 xrge0gsumle 24729 clmadd 24981 isclmp 25004 ipcau2 25141 reefgim 26367 efabl 26466 efsubm 26467 dchrptlem2 27183 dchrsum2 27186 qabvle 27543 padicabv 27548 ostth2lem2 27552 ostth3 27556 ressplusf 32892 xrge0plusg 32961 submomnd 33031 ringinvval 33193 dvrcan5 33194 xrge0slmod 33326 idlinsubrg 33409 zringfrac 33532 drgextlsp 33596 fedgmullem2 33633 algextdeglem8 33721 2sqr3minply 33777 cos9thpiminply 33785 qqhghm 33985 qqhrhm 33986 esumpfinvallem 34071 lcdvadd 41598 primrootsunit1 42092 aks6d1c6isolem2 42170 mhphflem 42591 deg1mhm 43196 sge0tsms 46385 cnfldsrngadd 48154 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |