Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version |
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressplusg.2 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
3 | plusgid 16915 | . 2 ⊢ +g = Slot (+g‘ndx) | |
4 | basendxnplusgndx 16918 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
5 | 4 | necomi 2997 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
6 | 1, 2, 3, 5 | resseqnbas 16877 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ndxcnx 16822 Basecbs 16840 ↾s cress 16867 +gcplusg 16888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 |
This theorem is referenced by: issstrmgm 18252 gsumress 18281 issubmnd 18327 ress0g 18328 submnd0 18329 resmhm 18374 resmhm2 18375 resmhm2b 18376 smndex1mgm 18461 smndex1sgrp 18462 smndex1mnd 18464 smndex1id 18465 submmulg 18662 subg0 18676 subginv 18677 subgcl 18680 subgsub 18682 subgmulg 18684 issubg2 18685 nmznsg 18711 resghm 18765 subgga 18821 gasubg 18823 resscntz 18853 symgplusg 18905 sylow2blem2 19141 sylow3lem6 19152 subglsm 19194 pj1ghm 19224 subgabl 19352 subcmn 19353 submcmn2 19355 cntrcmnd 19358 cycsubmcmn 19404 ringidss 19731 opprsubg 19793 unitgrp 19824 unitlinv 19834 unitrinv 19835 invrpropd 19855 isdrng2 19916 drngmcl 19919 drngid2 19922 isdrngd 19931 subrgugrp 19958 issubrg2 19959 subrgpropd 19974 cntzsdrg 19985 abvres 20014 islss3 20136 sralmod 20370 xrs1mnd 20548 xrs10 20549 xrs1cmn 20550 xrge0subm 20551 cnmsubglem 20573 expmhm 20579 nn0srg 20580 rge0srg 20581 zringplusg 20589 expghm 20609 psgnghm 20697 psgnco 20700 evpmodpmf1o 20713 replusg 20727 phlssphl 20776 frlmplusgval 20881 resspsradd 21095 mpladd 21123 ressmpladd 21140 mhpmulcl 21249 mplplusg 21301 ply1plusg 21306 ressply1add 21311 mdetralt 21665 invrvald 21733 submtmd 23163 imasdsf1olem 23434 xrge0gsumle 23902 clmadd 24143 isclmp 24166 ipcau2 24303 reefgim 25514 efabl 25611 efsubm 25612 dchrptlem2 26318 dchrsum2 26321 qabvle 26678 padicabv 26683 ostth2lem2 26687 ostth3 26691 ressplusf 31137 ressmulgnn 31194 xrge0plusg 31198 submomnd 31238 ringinvval 31391 dvrcan5 31392 rhmunitinv 31423 xrge0slmod 31450 idlinsubrg 31510 drgextlsp 31583 fedgmullem2 31613 qqhghm 31838 qqhrhm 31839 esumpfinvallem 31942 lcdvadd 39538 mhphflem 40207 deg1mhm 40948 sge0tsms 43808 cnfldsrngadd 45212 issubmgm2 45232 resmgmhm 45240 resmgmhm2 45241 resmgmhm2b 45242 lidlrng 45373 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |