Colors of
variables: wff
setvar class |
Syntax hints:
β wi 4 = wceq 1541
β wcel 2106 βcfv 6543 (class class class)co 7408
ndxcnx 17125 Basecbs 17143
βΎs cress 17172 +gcplusg 17196 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274
df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 |
This theorem is referenced by: issstrmgm
18571 gsumress
18600 issubmnd
18651 ress0g
18652 submnd0
18653 resmhm
18700 resmhm2
18701 resmhm2b
18702 smndex1mgm
18787 smndex1sgrp
18788 smndex1mnd
18790 smndex1id
18791 submmulg
18997 subg0
19011 subginv
19012 subgcl
19015 subgsub
19017 subgmulg
19019 issubg2
19020 nmznsg
19047 resghm
19107 subgga
19163 gasubg
19165 resscntz
19196 symgplusg
19249 sylow2blem2
19488 sylow3lem6
19499 subglsm
19540 pj1ghm
19570 subgabl
19703 subcmn
19704 submcmn2
19706 cntrcmnd
19709 cycsubmcmn
19756 ringidss
20093 opprsubg
20165 unitgrp
20196 unitlinv
20206 unitrinv
20207 invrpropd
20231 rhmunitinv
20289 subrgugrp
20337 issubrg2
20338 subrgpropd
20354 isdrng2
20370 drngmcl
20373 drngid2
20377 isdrngd
20389 isdrngdOLD
20391 cntzsdrg
20417 abvres
20446 islss3
20569 sralmod
20808 xrs1mnd
20982 xrs10
20983 xrs1cmn
20984 xrge0subm
20985 cnmsubglem
21007 expmhm
21013 nn0srg
21014 rge0srg
21015 zringplusg
21023 expghm
21044 psgnghm
21132 psgnco
21135 evpmodpmf1o
21148 replusg
21162 phlssphl
21211 frlmplusgval
21318 resspsradd
21535 mplplusg
21565 ressmpladd
21583 mhpmulcl
21691 ply1plusg
21746 ressply1add
21751 mdetralt
22109 invrvald
22177 submtmd
23607 imasdsf1olem
23878 xrge0gsumle
24348 clmadd
24589 isclmp
24612 ipcau2
24750 reefgim
25961 efabl
26058 efsubm
26059 dchrptlem2
26765 dchrsum2
26768 qabvle
27125 padicabv
27130 ostth2lem2
27134 ostth3
27138 ressplusf
32122 ressmulgnn
32179 xrge0plusg
32183 submomnd
32223 ringinvval
32379 dvrcan5
32380 xrge0slmod
32458 idlinsubrg
32544 evls1addd
32643 drgextlsp
32676 fedgmullem2
32710 qqhghm
32963 qqhrhm
32964 esumpfinvallem
33067 lcdvadd
40463 mhphflem
41170 deg1mhm
41939 sge0tsms
45086 cnfldsrngadd
46530 issubmgm2
46550 resmgmhm
46558 resmgmhm2
46559 resmgmhm2b
46560 issubrng2
46727 subrngpropd
46737 rnglidlrng
46748 rngqiprngghmlem3
46764 amgmlemALT
47840 |