| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusg.2 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | plusgid 17247 | . 2 ⊢ +g = Slot (+g‘ndx) | |
| 4 | basendxnplusgndx 17250 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2979 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | 1, 2, 3, 5 | resseqnbas 17212 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 |
| This theorem is referenced by: issstrmgm 18580 gsumress 18609 issubmgm2 18630 resmgmhm 18638 resmgmhm2 18639 resmgmhm2b 18640 issubmnd 18688 ress0g 18689 submnd0 18690 resmhm 18747 resmhm2 18748 resmhm2b 18749 smndex1mgm 18834 smndex1sgrp 18835 smndex1mnd 18837 smndex1id 18838 ressmulgnn 19008 ressmulgnnd 19010 submmulg 19050 subg0 19064 subginv 19065 subgcl 19068 subgsub 19070 subgmulg 19072 issubg2 19073 nmznsg 19100 resghm 19164 subgga 19232 gasubg 19234 resscntz 19265 symgplusg 19313 sylow2blem2 19551 sylow3lem6 19562 subglsm 19603 pj1ghm 19633 subgabl 19766 subcmn 19767 submcmn2 19769 cntrcmnd 19772 cycsubmcmn 19819 ringidss 20186 opprsubg 20261 unitgrp 20292 unitlinv 20302 unitrinv 20303 invrpropd 20327 rhmunitinv 20420 issubrng2 20467 subrngpropd 20477 subrgugrp 20500 issubrg2 20501 subrgpropd 20517 isdrng2 20652 drngmclOLD 20660 drngid2 20661 isdrngd 20674 isdrngdOLD 20676 cntzsdrg 20711 abvres 20740 islss3 20865 sralmod 21094 rnglidlrng 21157 rngqiprngghmlem3 21199 xrs1mnd 21321 xrs10 21322 xrs1cmn 21323 xrge0subm 21324 cnmsubglem 21347 expmhm 21353 nn0srg 21354 rge0srg 21355 zringplusg 21364 expghm 21385 psgnghm 21489 psgnco 21492 evpmodpmf1o 21505 replusg 21519 phlssphl 21568 frlmplusgval 21673 resspsradd 21884 mplplusg 21916 ressmpladd 21936 mhpmulcl 22036 ply1plusg 22108 ressply1add 22114 evls1addd 22258 mdetralt 22495 invrvald 22563 submtmd 23991 imasdsf1olem 24261 xrge0gsumle 24722 clmadd 24974 isclmp 24997 ipcau2 25134 reefgim 26360 efabl 26459 efsubm 26460 dchrptlem2 27176 dchrsum2 27179 qabvle 27536 padicabv 27541 ostth2lem2 27545 ostth3 27549 ressplusf 32885 xrge0plusg 32954 submomnd 33024 ringinvval 33186 dvrcan5 33187 xrge0slmod 33319 idlinsubrg 33402 zringfrac 33525 drgextlsp 33589 fedgmullem2 33626 algextdeglem8 33714 2sqr3minply 33770 cos9thpiminply 33778 qqhghm 33978 qqhrhm 33979 esumpfinvallem 34064 lcdvadd 41591 primrootsunit1 42085 aks6d1c6isolem2 42163 mhphflem 42584 deg1mhm 43189 sge0tsms 46378 cnfldsrngadd 48150 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |