Colors of
variables: wff
setvar class |
Syntax hints:
β wi 4 = wceq 1542
β wcel 2107 βcfv 6544 (class class class)co 7409
ndxcnx 17126 Basecbs 17144
βΎs cress 17173 +gcplusg 17197 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275
df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 |
This theorem is referenced by: issstrmgm
18572 gsumress
18601 issubmnd
18652 ress0g
18653 submnd0
18654 resmhm
18701 resmhm2
18702 resmhm2b
18703 smndex1mgm
18788 smndex1sgrp
18789 smndex1mnd
18791 smndex1id
18792 submmulg
18998 subg0
19012 subginv
19013 subgcl
19016 subgsub
19018 subgmulg
19020 issubg2
19021 nmznsg
19048 resghm
19108 subgga
19164 gasubg
19166 resscntz
19197 symgplusg
19250 sylow2blem2
19489 sylow3lem6
19500 subglsm
19541 pj1ghm
19571 subgabl
19704 subcmn
19705 submcmn2
19707 cntrcmnd
19710 cycsubmcmn
19757 ringidss
20094 opprsubg
20166 unitgrp
20197 unitlinv
20207 unitrinv
20208 invrpropd
20232 rhmunitinv
20290 subrgugrp
20338 issubrg2
20339 subrgpropd
20355 isdrng2
20371 drngmcl
20374 drngid2
20378 isdrngd
20390 isdrngdOLD
20392 cntzsdrg
20418 abvres
20447 islss3
20570 sralmod
20809 xrs1mnd
20983 xrs10
20984 xrs1cmn
20985 xrge0subm
20986 cnmsubglem
21008 expmhm
21014 nn0srg
21015 rge0srg
21016 zringplusg
21024 expghm
21045 psgnghm
21133 psgnco
21136 evpmodpmf1o
21149 replusg
21163 phlssphl
21212 frlmplusgval
21319 resspsradd
21536 mplplusg
21566 ressmpladd
21584 mhpmulcl
21692 ply1plusg
21747 ressply1add
21752 mdetralt
22110 invrvald
22178 submtmd
23608 imasdsf1olem
23879 xrge0gsumle
24349 clmadd
24590 isclmp
24613 ipcau2
24751 reefgim
25962 efabl
26059 efsubm
26060 dchrptlem2
26768 dchrsum2
26771 qabvle
27128 padicabv
27133 ostth2lem2
27137 ostth3
27141 ressplusf
32127 ressmulgnn
32184 xrge0plusg
32188 submomnd
32228 ringinvval
32384 dvrcan5
32385 xrge0slmod
32463 idlinsubrg
32549 evls1addd
32648 drgextlsp
32681 fedgmullem2
32715 qqhghm
32968 qqhrhm
32969 esumpfinvallem
33072 lcdvadd
40468 mhphflem
41168 deg1mhm
41949 sge0tsms
45096 cnfldsrngadd
46540 issubmgm2
46560 resmgmhm
46568 resmgmhm2
46569 resmgmhm2b
46570 issubrng2
46737 subrngpropd
46747 rnglidlrng
46758 rngqiprngghmlem3
46774 amgmlemALT
47850 |