| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusg.2 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | plusgid 17183 | . 2 ⊢ +g = Slot (+g‘ndx) | |
| 4 | basendxnplusgndx 17186 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2982 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | 1, 2, 3, 5 | resseqnbas 17148 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ndxcnx 17099 Basecbs 17115 ↾s cress 17136 +gcplusg 17156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 |
| This theorem is referenced by: issstrmgm 18556 gsumress 18585 issubmgm2 18606 resmgmhm 18614 resmgmhm2 18615 resmgmhm2b 18616 issubmnd 18664 ress0g 18665 submnd0 18666 resmhm 18723 resmhm2 18724 resmhm2b 18725 smndex1mgm 18810 smndex1sgrp 18811 smndex1mnd 18813 smndex1id 18814 ressmulgnn 18984 ressmulgnnd 18986 submmulg 19026 subg0 19040 subginv 19041 subgcl 19044 subgsub 19046 subgmulg 19048 issubg2 19049 nmznsg 19075 resghm 19139 subgga 19207 gasubg 19209 resscntz 19240 symgplusg 19290 sylow2blem2 19528 sylow3lem6 19539 subglsm 19580 pj1ghm 19610 subgabl 19743 subcmn 19744 submcmn2 19746 cntrcmnd 19749 cycsubmcmn 19796 submomnd 20039 ringidss 20190 opprsubg 20265 unitgrp 20296 unitlinv 20306 unitrinv 20307 invrpropd 20331 rhmunitinv 20421 issubrng2 20468 subrngpropd 20478 subrgugrp 20501 issubrg2 20502 subrgpropd 20518 isdrng2 20653 drngmclOLD 20661 drngid2 20662 isdrngd 20675 isdrngdOLD 20677 cntzsdrg 20712 abvres 20741 islss3 20887 sralmod 21116 rnglidlrng 21179 rngqiprngghmlem3 21221 cnmsubglem 21362 expmhm 21368 nn0srg 21369 rge0srg 21370 xrge0plusg 21371 xrs1mnd 21372 xrs10 21373 xrs1cmn 21374 xrge0subm 21375 zringplusg 21386 expghm 21407 psgnghm 21512 psgnco 21515 evpmodpmf1o 21528 replusg 21542 phlssphl 21591 frlmplusgval 21696 resspsradd 21907 mplplusg 21939 ressmpladd 21959 mhpmulcl 22059 ply1plusg 22131 ressply1add 22137 evls1addd 22281 mdetralt 22518 invrvald 22586 submtmd 24014 imasdsf1olem 24283 xrge0gsumle 24744 clmadd 24996 isclmp 25019 ipcau2 25156 reefgim 26382 efabl 26481 efsubm 26482 dchrptlem2 27198 dchrsum2 27201 qabvle 27558 padicabv 27563 ostth2lem2 27567 ostth3 27571 ressplusf 32936 ringinvval 33194 dvrcan5 33195 xrge0slmod 33305 idlinsubrg 33388 zringfrac 33511 drgextlsp 33598 fedgmullem2 33635 algextdeglem8 33729 2sqr3minply 33785 cos9thpiminply 33793 qqhghm 33993 qqhrhm 33994 esumpfinvallem 34079 lcdvadd 41636 primrootsunit1 42130 aks6d1c6isolem2 42208 mhphflem 42629 deg1mhm 43233 sge0tsms 46418 cnfldsrngadd 48193 amgmlemALT 49835 |
| Copyright terms: Public domain | W3C validator |