| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusg.2 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | plusgid 17223 | . 2 ⊢ +g = Slot (+g‘ndx) | |
| 4 | basendxnplusgndx 17226 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2979 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | 1, 2, 3, 5 | resseqnbas 17188 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ndxcnx 17139 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 |
| This theorem is referenced by: issstrmgm 18556 gsumress 18585 issubmgm2 18606 resmgmhm 18614 resmgmhm2 18615 resmgmhm2b 18616 issubmnd 18664 ress0g 18665 submnd0 18666 resmhm 18723 resmhm2 18724 resmhm2b 18725 smndex1mgm 18810 smndex1sgrp 18811 smndex1mnd 18813 smndex1id 18814 ressmulgnn 18984 ressmulgnnd 18986 submmulg 19026 subg0 19040 subginv 19041 subgcl 19044 subgsub 19046 subgmulg 19048 issubg2 19049 nmznsg 19076 resghm 19140 subgga 19208 gasubg 19210 resscntz 19241 symgplusg 19289 sylow2blem2 19527 sylow3lem6 19538 subglsm 19579 pj1ghm 19609 subgabl 19742 subcmn 19743 submcmn2 19745 cntrcmnd 19748 cycsubmcmn 19795 ringidss 20162 opprsubg 20237 unitgrp 20268 unitlinv 20278 unitrinv 20279 invrpropd 20303 rhmunitinv 20396 issubrng2 20443 subrngpropd 20453 subrgugrp 20476 issubrg2 20477 subrgpropd 20493 isdrng2 20628 drngmclOLD 20636 drngid2 20637 isdrngd 20650 isdrngdOLD 20652 cntzsdrg 20687 abvres 20716 islss3 20841 sralmod 21070 rnglidlrng 21133 rngqiprngghmlem3 21175 xrs1mnd 21297 xrs10 21298 xrs1cmn 21299 xrge0subm 21300 cnmsubglem 21323 expmhm 21329 nn0srg 21330 rge0srg 21331 zringplusg 21340 expghm 21361 psgnghm 21465 psgnco 21468 evpmodpmf1o 21481 replusg 21495 phlssphl 21544 frlmplusgval 21649 resspsradd 21860 mplplusg 21892 ressmpladd 21912 mhpmulcl 22012 ply1plusg 22084 ressply1add 22090 evls1addd 22234 mdetralt 22471 invrvald 22539 submtmd 23967 imasdsf1olem 24237 xrge0gsumle 24698 clmadd 24950 isclmp 24973 ipcau2 25110 reefgim 26336 efabl 26435 efsubm 26436 dchrptlem2 27152 dchrsum2 27155 qabvle 27512 padicabv 27517 ostth2lem2 27521 ostth3 27525 ressplusf 32858 xrge0plusg 32927 submomnd 32997 ringinvval 33159 dvrcan5 33160 xrge0slmod 33292 idlinsubrg 33375 zringfrac 33498 drgextlsp 33562 fedgmullem2 33599 algextdeglem8 33687 2sqr3minply 33743 cos9thpiminply 33751 qqhghm 33951 qqhrhm 33952 esumpfinvallem 34037 lcdvadd 41564 primrootsunit1 42058 aks6d1c6isolem2 42136 mhphflem 42557 deg1mhm 43162 sge0tsms 46351 cnfldsrngadd 48123 amgmlemALT 49765 |
| Copyright terms: Public domain | W3C validator |