![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version |
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressplusg.2 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
3 | df-plusg 16407 | . 2 ⊢ +g = Slot 2 | |
4 | 2nn 11558 | . 2 ⊢ 2 ∈ ℕ | |
5 | 1lt2 11656 | . 2 ⊢ 1 < 2 | |
6 | 1, 2, 3, 4, 5 | resslem 16386 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ‘cfv 6225 (class class class)co 7016 2c2 11540 ↾s cress 16313 +gcplusg 16394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 |
This theorem is referenced by: issstrmgm 17691 gsumress 17715 issubmnd 17757 ress0g 17758 submnd0 17759 resmhm 17798 resmhm2 17799 resmhm2b 17800 submmulg 18025 subg0 18039 subginv 18040 subgcl 18043 subgsub 18045 subgmulg 18047 issubg2 18048 nmznsg 18077 resghm 18115 subgga 18171 gasubg 18173 resscntz 18203 sylow2blem2 18476 sylow3lem6 18487 subglsm 18526 pj1ghm 18556 subgabl 18681 subcmn 18682 submcmn2 18684 ringidss 19017 opprsubg 19076 unitgrp 19107 unitlinv 19117 unitrinv 19118 invrpropd 19138 isdrng2 19202 drngmcl 19205 drngid2 19208 isdrngd 19217 subrgugrp 19244 issubrg2 19245 subrgpropd 19260 cntzsdrg 19271 abvres 19300 islss3 19421 sralmod 19649 resspsradd 19884 mpladd 19910 ressmpladd 19925 mplplusg 20071 ply1plusg 20076 ressply1add 20081 xrs1mnd 20265 xrs10 20266 xrs1cmn 20267 xrge0subm 20268 cnmsubglem 20290 expmhm 20296 nn0srg 20297 rge0srg 20298 zringplusg 20306 expghm 20325 psgnghm 20406 psgnco 20409 evpmodpmf1o 20422 replusg 20436 phlssphl 20485 frlmplusgval 20590 mdetralt 20901 invrvald 20969 submtmd 22396 imasdsf1olem 22666 xrge0gsumle 23124 clmadd 23361 isclmp 23384 ipcau2 23520 reefgim 24721 efabl 24815 efsubm 24816 dchrptlem2 25523 dchrsum2 25526 qabvle 25883 padicabv 25888 ostth2lem2 25892 ostth3 25896 ressplusf 30311 ressmulgnn 30344 xrge0plusg 30348 submomnd 30371 cntrcmnd 30508 ringinvval 30517 dvrcan5 30518 rhmunitinv 30549 xrge0slmod 30571 drgextlsp 30600 fedgmullem2 30630 qqhghm 30846 qqhrhm 30847 esumpfinvallem 30950 lcdvadd 38264 deg1mhm 39292 sge0tsms 42204 cnfldsrngadd 43519 issubmgm2 43539 resmgmhm 43547 resmgmhm2 43548 resmgmhm2b 43549 lidlrng 43676 amgmlemALT 44384 |
Copyright terms: Public domain | W3C validator |