![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version |
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressplusg.2 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
3 | plusgid 17324 | . 2 ⊢ +g = Slot (+g‘ndx) | |
4 | basendxnplusgndx 17327 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
5 | 4 | necomi 2992 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
6 | 1, 2, 3, 5 | resseqnbas 17286 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 ndxcnx 17226 Basecbs 17244 ↾s cress 17273 +gcplusg 17297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 |
This theorem is referenced by: issstrmgm 18678 gsumress 18707 issubmgm2 18728 resmgmhm 18736 resmgmhm2 18737 resmgmhm2b 18738 issubmnd 18786 ress0g 18787 submnd0 18788 resmhm 18845 resmhm2 18846 resmhm2b 18847 smndex1mgm 18932 smndex1sgrp 18933 smndex1mnd 18935 smndex1id 18936 ressmulgnn 19106 ressmulgnnd 19108 submmulg 19148 subg0 19162 subginv 19163 subgcl 19166 subgsub 19168 subgmulg 19170 issubg2 19171 nmznsg 19198 resghm 19262 subgga 19330 gasubg 19332 resscntz 19363 symgplusg 19414 sylow2blem2 19653 sylow3lem6 19664 subglsm 19705 pj1ghm 19735 subgabl 19868 subcmn 19869 submcmn2 19871 cntrcmnd 19874 cycsubmcmn 19921 ringidss 20290 opprsubg 20368 unitgrp 20399 unitlinv 20409 unitrinv 20410 invrpropd 20434 rhmunitinv 20527 issubrng2 20574 subrngpropd 20584 subrgugrp 20607 issubrg2 20608 subrgpropd 20624 isdrng2 20759 drngmclOLD 20767 drngid2 20768 isdrngd 20781 isdrngdOLD 20783 cntzsdrg 20819 abvres 20848 islss3 20974 sralmod 21211 rnglidlrng 21274 rngqiprngghmlem3 21316 xrs1mnd 21439 xrs10 21440 xrs1cmn 21441 xrge0subm 21442 cnmsubglem 21465 expmhm 21471 nn0srg 21472 rge0srg 21473 zringplusg 21482 expghm 21503 psgnghm 21615 psgnco 21618 evpmodpmf1o 21631 replusg 21645 phlssphl 21694 frlmplusgval 21801 resspsradd 22012 mplplusg 22044 ressmpladd 22064 mhpmulcl 22170 ply1plusg 22240 ressply1add 22246 evls1addd 22390 mdetralt 22629 invrvald 22697 submtmd 24127 imasdsf1olem 24398 xrge0gsumle 24868 clmadd 25120 isclmp 25143 ipcau2 25281 reefgim 26508 efabl 26606 efsubm 26607 dchrptlem2 27323 dchrsum2 27326 qabvle 27683 padicabv 27688 ostth2lem2 27692 ostth3 27696 ressplusf 32932 xrge0plusg 33000 submomnd 33069 ringinvval 33224 dvrcan5 33225 xrge0slmod 33355 idlinsubrg 33438 zringfrac 33561 drgextlsp 33622 fedgmullem2 33657 algextdeglem8 33729 2sqr3minply 33752 qqhghm 33950 qqhrhm 33951 esumpfinvallem 34054 lcdvadd 41579 primrootsunit1 42078 aks6d1c6isolem2 42156 mhphflem 42582 deg1mhm 43188 sge0tsms 46335 cnfldsrngadd 48005 amgmlemALT 49033 |
Copyright terms: Public domain | W3C validator |