| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusg.2 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | plusgid 17296 | . 2 ⊢ +g = Slot (+g‘ndx) | |
| 4 | basendxnplusgndx 17299 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2986 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | 1, 2, 3, 5 | resseqnbas 17261 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 ndxcnx 17210 Basecbs 17226 ↾s cress 17249 +gcplusg 17269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 |
| This theorem is referenced by: issstrmgm 18629 gsumress 18658 issubmgm2 18679 resmgmhm 18687 resmgmhm2 18688 resmgmhm2b 18689 issubmnd 18737 ress0g 18738 submnd0 18739 resmhm 18796 resmhm2 18797 resmhm2b 18798 smndex1mgm 18883 smndex1sgrp 18884 smndex1mnd 18886 smndex1id 18887 ressmulgnn 19057 ressmulgnnd 19059 submmulg 19099 subg0 19113 subginv 19114 subgcl 19117 subgsub 19119 subgmulg 19121 issubg2 19122 nmznsg 19149 resghm 19213 subgga 19281 gasubg 19283 resscntz 19314 symgplusg 19362 sylow2blem2 19600 sylow3lem6 19611 subglsm 19652 pj1ghm 19682 subgabl 19815 subcmn 19816 submcmn2 19818 cntrcmnd 19821 cycsubmcmn 19868 ringidss 20235 opprsubg 20310 unitgrp 20341 unitlinv 20351 unitrinv 20352 invrpropd 20376 rhmunitinv 20469 issubrng2 20516 subrngpropd 20526 subrgugrp 20549 issubrg2 20550 subrgpropd 20566 isdrng2 20701 drngmclOLD 20709 drngid2 20710 isdrngd 20723 isdrngdOLD 20725 cntzsdrg 20760 abvres 20789 islss3 20914 sralmod 21143 rnglidlrng 21206 rngqiprngghmlem3 21248 xrs1mnd 21370 xrs10 21371 xrs1cmn 21372 xrge0subm 21373 cnmsubglem 21396 expmhm 21402 nn0srg 21403 rge0srg 21404 zringplusg 21413 expghm 21434 psgnghm 21538 psgnco 21541 evpmodpmf1o 21554 replusg 21568 phlssphl 21617 frlmplusgval 21722 resspsradd 21933 mplplusg 21965 ressmpladd 21985 mhpmulcl 22085 ply1plusg 22157 ressply1add 22163 evls1addd 22307 mdetralt 22544 invrvald 22612 submtmd 24040 imasdsf1olem 24310 xrge0gsumle 24771 clmadd 25023 isclmp 25046 ipcau2 25184 reefgim 26410 efabl 26509 efsubm 26510 dchrptlem2 27226 dchrsum2 27229 qabvle 27586 padicabv 27591 ostth2lem2 27595 ostth3 27599 ressplusf 32885 xrge0plusg 32954 submomnd 33024 ringinvval 33176 dvrcan5 33177 xrge0slmod 33309 idlinsubrg 33392 zringfrac 33515 drgextlsp 33579 fedgmullem2 33616 algextdeglem8 33704 2sqr3minply 33760 cos9thpiminply 33768 qqhghm 33965 qqhrhm 33966 esumpfinvallem 34051 lcdvadd 41562 primrootsunit1 42056 aks6d1c6isolem2 42134 mhphflem 42566 deg1mhm 43171 sge0tsms 46357 cnfldsrngadd 48085 amgmlemALT 49615 |
| Copyright terms: Public domain | W3C validator |