| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressplusg | Structured version Visualization version GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusg.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusg.2 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| ressplusg | ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusg.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 2 | ressplusg.2 | . 2 ⊢ + = (+g‘𝐺) | |
| 3 | plusgid 17195 | . 2 ⊢ +g = Slot (+g‘ndx) | |
| 4 | basendxnplusgndx 17198 | . . 3 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2983 | . 2 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | 1, 2, 3, 5 | resseqnbas 17160 | 1 ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 ndxcnx 17111 Basecbs 17127 ↾s cress 17148 +gcplusg 17168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 |
| This theorem is referenced by: issstrmgm 18569 gsumress 18598 issubmgm2 18619 resmgmhm 18627 resmgmhm2 18628 resmgmhm2b 18629 issubmnd 18677 ress0g 18678 submnd0 18679 resmhm 18736 resmhm2 18737 resmhm2b 18738 smndex1mgm 18823 smndex1sgrp 18824 smndex1mnd 18826 smndex1id 18827 ressmulgnn 18997 ressmulgnnd 18999 submmulg 19039 subg0 19053 subginv 19054 subgcl 19057 subgsub 19059 subgmulg 19061 issubg2 19062 nmznsg 19088 resghm 19152 subgga 19220 gasubg 19222 resscntz 19253 symgplusg 19303 sylow2blem2 19541 sylow3lem6 19552 subglsm 19593 pj1ghm 19623 subgabl 19756 subcmn 19757 submcmn2 19759 cntrcmnd 19762 cycsubmcmn 19809 submomnd 20052 ringidss 20203 opprsubg 20279 unitgrp 20310 unitlinv 20320 unitrinv 20321 invrpropd 20345 rhmunitinv 20435 issubrng2 20482 subrngpropd 20492 subrgugrp 20515 issubrg2 20516 subrgpropd 20532 isdrng2 20667 drngmclOLD 20675 drngid2 20676 isdrngd 20689 isdrngdOLD 20691 cntzsdrg 20726 abvres 20755 islss3 20901 sralmod 21130 rnglidlrng 21193 rngqiprngghmlem3 21235 cnmsubglem 21376 expmhm 21382 nn0srg 21383 rge0srg 21384 xrge0plusg 21385 xrs1mnd 21386 xrs10 21387 xrs1cmn 21388 xrge0subm 21389 zringplusg 21400 expghm 21421 psgnghm 21526 psgnco 21529 evpmodpmf1o 21542 replusg 21556 phlssphl 21605 frlmplusgval 21710 resspsradd 21921 mplplusg 21953 ressmpladd 21975 mhpmulcl 22083 ply1plusg 22155 ressply1add 22161 evls1addd 22306 mdetralt 22543 invrvald 22611 submtmd 24039 imasdsf1olem 24308 xrge0gsumle 24769 clmadd 25021 isclmp 25044 ipcau2 25181 reefgim 26407 efabl 26506 efsubm 26507 dchrptlem2 27223 dchrsum2 27226 qabvle 27583 padicabv 27588 ostth2lem2 27592 ostth3 27596 ressplusf 32973 ringinvval 33245 dvrcan5 33246 xrge0slmod 33357 idlinsubrg 33440 zringfrac 33563 drgextlsp 33678 fedgmullem2 33715 algextdeglem8 33809 2sqr3minply 33865 cos9thpiminply 33873 qqhghm 34073 qqhrhm 34074 esumpfinvallem 34159 lcdvadd 41769 primrootsunit1 42263 aks6d1c6isolem2 42341 mhphflem 42754 deg1mhm 43357 sge0tsms 46540 cnfldsrngadd 48324 amgmlemALT 49964 |
| Copyright terms: Public domain | W3C validator |