Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressmulr | Structured version Visualization version GIF version |
Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
ressmulr.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
ressmulr.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ressmulr | ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmulr.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | ressmulr.2 | . 2 ⊢ · = (.r‘𝑅) | |
3 | mulrid 16930 | . 2 ⊢ .r = Slot (.r‘ndx) | |
4 | basendxnmulrndx 16931 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
5 | 4 | necomi 2997 | . 2 ⊢ (.r‘ndx) ≠ (Base‘ndx) |
6 | 1, 2, 3, 5 | resseqnbas 16877 | 1 ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ndxcnx 16822 Basecbs 16840 ↾s cress 16867 .rcmulr 16889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-mulr 16902 |
This theorem is referenced by: mgpress 19650 mgpressOLD 19651 subrg1 19949 subrgmcl 19951 subrgdvds 19953 subrguss 19954 subrginv 19955 subrgdv 19956 subrgunit 19957 subrgugrp 19958 issubrg2 19959 subrgpropd 19974 primefld 19988 abvres 20014 sralmod 20370 nn0srg 20580 rge0srg 20581 zringmulr 20591 remulr 20728 issubassa3 20982 resspsrmul 21096 resspsrvsca 21097 mplmul 21125 ressmplmul 21141 mplmulr 21302 ply1mulr 21308 ressply1mul 21312 dmatcrng 21559 scmatcrng 21578 scmatsrng1 21580 scmatmhm 21591 clmmul 24144 isclmp 24166 cphsubrglem 24246 ipcau2 24303 qabvexp 26679 ostthlem2 26681 padicabv 26683 ostth2lem2 26687 ostth3 26691 ress1r 31388 rdivmuldivd 31390 suborng 31416 xrge0slmod 31450 idlinsubrg 31510 drgextlsp 31583 fedgmullem1 31612 fedgmullem2 31613 extdg1id 31640 xrge0iifmhm 31791 qqhrhm 31839 mhphf 40208 cnfldsrngmul 45213 lidlmmgm 45371 lidlmsgrp 45372 lidlrng 45373 zlidlring 45374 uzlidlring 45375 aacllem 46391 |
Copyright terms: Public domain | W3C validator |