Colors of
variables: wff
setvar class |
Syntax hints:
β wi 4 = wceq 1541
β wcel 2106 βcfv 6543 (class class class)co 7408
ndxcnx 17125 Basecbs 17143
βΎs cress 17172 .rcmulr 17197 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274
df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-mulr 17210 |
This theorem is referenced by: mgpress
20001 mgpressOLD
20002 rdivmuldivd
20226 subrg1
20328 subrgmcl
20330 subrgdvds
20332 subrguss
20333 subrginv
20334 subrgdv
20335 subrgunit
20336 subrgugrp
20337 issubrg2
20338 subrgpropd
20354 primefld
20420 abvres
20446 sralmod
20808 nn0srg
21014 rge0srg
21015 zringmulr
21026 remulr
21163 issubassa3
21419 resspsrmul
21536 resspsrvsca
21537 mplmulr
21566 ressmplmul
21584 ply1mulr
21748 ressply1mul
21752 dmatcrng
22003 scmatcrng
22022 scmatsrng1
22024 scmatmhm
22035 clmmul
24590 isclmp
24612 cphsubrglem
24693 ipcau2
24750 qabvexp
27126 ostthlem2
27128 padicabv
27130 ostth2lem2
27134 ostth3
27138 ress1r
32378 suborng
32428 xrge0slmod
32458 idlinsubrg
32544 evls1muld
32644 drgextlsp
32676 fedgmullem1
32709 fedgmullem2
32710 extdg1id
32737 xrge0iifmhm
32914 qqhrhm
32964 imacrhmcl
41091 cnfldsrngmul
46531 subrngmcl
46726 issubrng2
46727 subrngpropd
46737 rnglidlmmgm
46746 rnglidlmsgrp
46747 rnglidlrng
46748 rngqiprngimfolem
46765 rngqiprnglinlem1
46766 rngqiprngimf1lem
46769 rngqiprngimf1
46775 rngqiprnglin
46777 rng2idl1cntr
46780 rngqiprngfulem5
46790 pzriprnglem6
46800 zlidlring
46816 uzlidlring
46817 aacllem
47838 |