Colors of
variables: wff
setvar class |
Syntax hints:
β wi 4 = wceq 1542
β wcel 2107 βcfv 6544 (class class class)co 7409
ndxcnx 17126 Basecbs 17144
βΎs cress 17173 .rcmulr 17198 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275
df-3 12276 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-mulr 17211 |
This theorem is referenced by: mgpress
20002 mgpressOLD
20003 rdivmuldivd
20227 subrg1
20329 subrgmcl
20331 subrgdvds
20333 subrguss
20334 subrginv
20335 subrgdv
20336 subrgunit
20337 subrgugrp
20338 issubrg2
20339 subrgpropd
20355 primefld
20421 abvres
20447 sralmod
20809 nn0srg
21015 rge0srg
21016 zringmulr
21027 remulr
21164 issubassa3
21420 resspsrmul
21537 resspsrvsca
21538 mplmulr
21567 ressmplmul
21585 ply1mulr
21749 ressply1mul
21753 dmatcrng
22004 scmatcrng
22023 scmatsrng1
22025 scmatmhm
22036 clmmul
24591 isclmp
24613 cphsubrglem
24694 ipcau2
24751 qabvexp
27129 ostthlem2
27131 padicabv
27133 ostth2lem2
27137 ostth3
27141 ress1r
32383 suborng
32433 xrge0slmod
32463 idlinsubrg
32549 evls1muld
32649 drgextlsp
32681 fedgmullem1
32714 fedgmullem2
32715 extdg1id
32742 xrge0iifmhm
32919 qqhrhm
32969 imacrhmcl
41089 cnfldsrngmul
46541 subrngmcl
46736 issubrng2
46737 subrngpropd
46747 rnglidlmmgm
46756 rnglidlmsgrp
46757 rnglidlrng
46758 rngqiprngimfolem
46775 rngqiprnglinlem1
46776 rngqiprngimf1lem
46779 rngqiprngimf1
46785 rngqiprnglin
46787 rng2idl1cntr
46790 rngqiprngfulem5
46800 pzriprnglem6
46810 zlidlring
46826 uzlidlring
46827 aacllem
47848 |