MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulr Structured version   Visualization version   GIF version

Theorem ressmulr 16943
Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
ressmulr.1 𝑆 = (𝑅s 𝐴)
ressmulr.2 · = (.r𝑅)
Assertion
Ref Expression
ressmulr (𝐴𝑉· = (.r𝑆))

Proof of Theorem ressmulr
StepHypRef Expression
1 ressmulr.1 . 2 𝑆 = (𝑅s 𝐴)
2 ressmulr.2 . 2 · = (.r𝑅)
3 mulrid 16930 . 2 .r = Slot (.r‘ndx)
4 basendxnmulrndx 16931 . . 3 (Base‘ndx) ≠ (.r‘ndx)
54necomi 2997 . 2 (.r‘ndx) ≠ (Base‘ndx)
61, 2, 3, 5resseqnbas 16877 1 (𝐴𝑉· = (.r𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  ndxcnx 16822  Basecbs 16840  s cress 16867  .rcmulr 16889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-mulr 16902
This theorem is referenced by:  mgpress  19650  mgpressOLD  19651  subrg1  19949  subrgmcl  19951  subrgdvds  19953  subrguss  19954  subrginv  19955  subrgdv  19956  subrgunit  19957  subrgugrp  19958  issubrg2  19959  subrgpropd  19974  primefld  19988  abvres  20014  sralmod  20370  nn0srg  20580  rge0srg  20581  zringmulr  20591  remulr  20728  issubassa3  20982  resspsrmul  21096  resspsrvsca  21097  mplmul  21125  ressmplmul  21141  mplmulr  21302  ply1mulr  21308  ressply1mul  21312  dmatcrng  21559  scmatcrng  21578  scmatsrng1  21580  scmatmhm  21591  clmmul  24144  isclmp  24166  cphsubrglem  24246  ipcau2  24303  qabvexp  26679  ostthlem2  26681  padicabv  26683  ostth2lem2  26687  ostth3  26691  ress1r  31388  rdivmuldivd  31390  suborng  31416  xrge0slmod  31450  idlinsubrg  31510  drgextlsp  31583  fedgmullem1  31612  fedgmullem2  31613  extdg1id  31640  xrge0iifmhm  31791  qqhrhm  31839  mhphf  40208  cnfldsrngmul  45213  lidlmmgm  45371  lidlmsgrp  45372  lidlrng  45373  zlidlring  45374  uzlidlring  45375  aacllem  46391
  Copyright terms: Public domain W3C validator