Colors of
variables: wff
setvar class |
Syntax hints:
β wi 4 = wceq 1541
β wcel 2106 βcfv 6543 (class class class)co 7411
ndxcnx 17128 Basecbs 17146
βΎs cress 17175 .rcmulr 17200 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277
df-3 12278 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-mulr 17213 |
This theorem is referenced by: mgpress
20004 mgpressOLD
20005 rdivmuldivd
20231 subrg1
20333 subrgmcl
20335 subrgdvds
20337 subrguss
20338 subrginv
20339 subrgdv
20340 subrgunit
20341 subrgugrp
20342 issubrg2
20343 subrgpropd
20359 primefld
20425 abvres
20451 sralmod
20815 nn0srg
21021 rge0srg
21022 zringmulr
21033 remulr
21170 issubassa3
21426 resspsrmul
21543 resspsrvsca
21544 mplmulr
21573 ressmplmul
21591 ply1mulr
21755 ressply1mul
21760 dmatcrng
22011 scmatcrng
22030 scmatsrng1
22032 scmatmhm
22043 clmmul
24598 isclmp
24620 cphsubrglem
24701 ipcau2
24758 qabvexp
27136 ostthlem2
27138 padicabv
27140 ostth2lem2
27144 ostth3
27148 ress1r
32424 suborng
32474 xrge0slmod
32504 idlinsubrg
32594 evls1muld
32694 resssra
32733 drgextlsp
32739 fedgmullem1
32773 fedgmullem2
32774 extdg1id
32801 xrge0iifmhm
32988 qqhrhm
33038 imacrhmcl
41173 cnfldsrngmul
46620 subrngmcl
46815 issubrng2
46816 subrngpropd
46826 rnglidlmmgm
46835 rnglidlmsgrp
46836 rnglidlrng
46837 rngqiprngimfolem
46854 rngqiprnglinlem1
46855 rngqiprngimf1lem
46858 rngqiprngimf1
46864 rngqiprnglin
46866 rng2idl1cntr
46869 rngqiprngfulem5
46879 pzriprnglem6
46889 zlidlring
46905 uzlidlring
46906 aacllem
47926 |