| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmulr | Structured version Visualization version GIF version | ||
| Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressmulr.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| ressmulr.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ressmulr | ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulr.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | ressmulr.2 | . 2 ⊢ · = (.r‘𝑅) | |
| 3 | mulridx 17338 | . 2 ⊢ .r = Slot (.r‘ndx) | |
| 4 | basendxnmulrndx 17339 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
| 5 | 4 | necomi 2995 | . 2 ⊢ (.r‘ndx) ≠ (Base‘ndx) |
| 6 | 1, 2, 3, 5 | resseqnbas 17287 | 1 ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ndxcnx 17230 Basecbs 17247 ↾s cress 17274 .rcmulr 17298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-mulr 17311 |
| This theorem is referenced by: mgpress 20147 rdivmuldivd 20413 subrngmcl 20557 issubrng2 20558 subrngpropd 20568 subrg1 20582 subrgdvds 20586 subrguss 20587 subrginv 20588 subrgdv 20589 subrgunit 20590 subrgugrp 20591 issubrg2 20592 subrgpropd 20608 primefld 20806 abvres 20832 sralmod 21194 rnglidlmmgm 21255 rnglidlmsgrp 21256 rnglidlrng 21257 rngqiprngimfolem 21300 rngqiprnglinlem1 21301 rngqiprngimf1lem 21304 rngqiprngimf1 21310 rngqiprnglin 21312 rng2idl1cntr 21315 rngqiprngfulem5 21325 nn0srg 21455 rge0srg 21456 zringmulr 21468 pzriprnglem6 21497 remulr 21629 issubassa3 21886 resspsrmul 21996 resspsrvsca 21997 mplmulr 22028 ressmplmul 22048 ply1mulr 22227 ressply1mul 22232 evls1muld 22376 dmatcrng 22508 scmatcrng 22527 scmatsrng1 22529 scmatmhm 22540 clmmul 25108 isclmp 25130 cphsubrglem 25211 ipcau2 25268 qabvexp 27670 ostthlem2 27672 padicabv 27674 ostth2lem2 27678 ostth3 27682 ress1r 33238 subrdom 33288 suborng 33345 xrge0slmod 33376 idlinsubrg 33459 zringfrac 33582 resssra 33638 drgextlsp 33644 fedgmullem1 33680 fedgmullem2 33681 extdg1id 33716 fldextrspunlsplem 33723 2sqr3minply 33791 xrge0iifmhm 33938 qqhrhm 33990 imacrhmcl 42524 cnfldsrngmul 48079 zlidlring 48150 uzlidlring 48151 aacllem 49320 |
| Copyright terms: Public domain | W3C validator |