MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbas Structured version   Visualization version   GIF version

Theorem ressbas 17279
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbas (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))

Proof of Theorem ressbas
StepHypRef Expression
1 ressbas.b . . . . 5 𝐵 = (Base‘𝑊)
2 simp1 1135 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝐵𝐴)
3 sseqin2 4230 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
42, 3sylib 218 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = 𝐵)
5 ressbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
65, 1ressid2 17277 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
76fveq2d 6910 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘𝑊))
81, 4, 73eqtr4a 2800 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
983expib 1121 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
10 simp2 1136 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
111fvexi 6920 . . . . . . 7 𝐵 ∈ V
1211inex2 5323 . . . . . 6 (𝐴𝐵) ∈ V
13 baseid 17247 . . . . . . 7 Base = Slot (Base‘ndx)
1413setsid 17241 . . . . . 6 ((𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1510, 12, 14sylancl 586 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
165, 1ressval2 17278 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1716fveq2d 6910 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1815, 17eqtr4d 2777 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
19183expib 1121 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
209, 19pm2.61i 182 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
21 in0 4400 . . . . 5 (𝐴 ∩ ∅) = ∅
22 fvprc 6898 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
231, 22eqtrid 2786 . . . . . 6 𝑊 ∈ V → 𝐵 = ∅)
2423ineq2d 4227 . . . . 5 𝑊 ∈ V → (𝐴𝐵) = (𝐴 ∩ ∅))
2521, 24, 223eqtr4a 2800 . . . 4 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑊))
26 base0 17249 . . . . . 6 ∅ = (Base‘∅)
2726eqcomi 2743 . . . . 5 (Base‘∅) = ∅
28 reldmress 17275 . . . . 5 Rel dom ↾s
2927, 5, 28oveqprc 17225 . . . 4 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅))
3025, 29eqtrd 2774 . . 3 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑅))
3130adantr 480 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
3220, 31pm2.61ian 812 1 (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  Vcvv 3477  cin 3961  wss 3962  c0 4338  cop 4636  cfv 6562  (class class class)co 7430   sSet csts 17196  ndxcnx 17226  Basecbs 17244  s cress 17273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-1cn 11210  ax-addcl 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-nn 12264  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274
This theorem is referenced by:  ressbasssg  17281  ressbas2  17282  ressbasssOLD  17284  ressress  17293  rescabs  17882  rescabsOLD  17883  resscatc  18162  idresefmnd  18924  smndex1bas  18931  resscntz  19363  idrespermg  19443  opprsubg  20368  subrngpropd  20584  subrgpropd  20624  sralmod  21211  lidlssbas  21240  lidlbas  21241  resstopn  23209  resstps  23210  ressuss  24286  ressxms  24553  ressms  24554  cphsubrglem  25224  cphsscph  25298  resspos  32940  resstos  32941  xrge0base  32998  xrge00  32999  submomnd  33069  suborng  33324  gsumge0cl  46326  sge0tsms  46335  uzlidlring  48078  dmatALTbas  48246
  Copyright terms: Public domain W3C validator