MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbas Structured version   Visualization version   GIF version

Theorem ressbas 17206
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbas (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))

Proof of Theorem ressbas
StepHypRef Expression
1 ressbas.b . . . . 5 𝐵 = (Base‘𝑊)
2 simp1 1136 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝐵𝐴)
3 sseqin2 4186 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
42, 3sylib 218 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = 𝐵)
5 ressbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
65, 1ressid2 17204 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
76fveq2d 6862 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘𝑊))
81, 4, 73eqtr4a 2790 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
983expib 1122 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
10 simp2 1137 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
111fvexi 6872 . . . . . . 7 𝐵 ∈ V
1211inex2 5273 . . . . . 6 (𝐴𝐵) ∈ V
13 baseid 17182 . . . . . . 7 Base = Slot (Base‘ndx)
1413setsid 17177 . . . . . 6 ((𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1510, 12, 14sylancl 586 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
165, 1ressval2 17205 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1716fveq2d 6862 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1815, 17eqtr4d 2767 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
19183expib 1122 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
209, 19pm2.61i 182 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
21 in0 4358 . . . . 5 (𝐴 ∩ ∅) = ∅
22 fvprc 6850 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
231, 22eqtrid 2776 . . . . . 6 𝑊 ∈ V → 𝐵 = ∅)
2423ineq2d 4183 . . . . 5 𝑊 ∈ V → (𝐴𝐵) = (𝐴 ∩ ∅))
2521, 24, 223eqtr4a 2790 . . . 4 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑊))
26 base0 17184 . . . . . 6 ∅ = (Base‘∅)
2726eqcomi 2738 . . . . 5 (Base‘∅) = ∅
28 reldmress 17202 . . . . 5 Rel dom ↾s
2927, 5, 28oveqprc 17162 . . . 4 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅))
3025, 29eqtrd 2764 . . 3 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑅))
3130adantr 480 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
3220, 31pm2.61ian 811 1 (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  c0 4296  cop 4595  cfv 6511  (class class class)co 7387   sSet csts 17133  ndxcnx 17163  Basecbs 17179  s cress 17200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201
This theorem is referenced by:  ressbasssg  17207  ressbas2  17208  ressbasssOLD  17210  ressress  17217  rescabs  17795  resscatc  18071  idresefmnd  18826  smndex1bas  18833  resscntz  19265  idrespermg  19341  opprsubg  20261  subrngpropd  20477  subrgpropd  20517  sralmod  21094  lidlssbas  21123  lidlbas  21124  resstopn  23073  resstps  23074  ressuss  24150  ressxms  24413  ressms  24414  cphsubrglem  25077  cphsscph  25151  resspos  32892  resstos  32893  xrge0base  32952  xrge00  32953  submomnd  33024  suborng  33293  gsumge0cl  46369  sge0tsms  46378  uzlidlring  48220  dmatALTbas  48387
  Copyright terms: Public domain W3C validator