| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbas | Structured version Visualization version GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbas | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | simp1 1136 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐵 ⊆ 𝐴) | |
| 3 | sseqin2 4203 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = 𝐵) |
| 5 | ressbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 6 | 5, 1 | ressid2 17260 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 7 | 6 | fveq2d 6885 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘𝑊)) |
| 8 | 1, 4, 7 | 3eqtr4a 2797 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 9 | 8 | 3expib 1122 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
| 10 | simp2 1137 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ V) | |
| 11 | 1 | fvexi 6895 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 12 | 11 | inex2 5293 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 13 | baseid 17236 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
| 14 | 13 | setsid 17231 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 15 | 10, 12, 14 | sylancl 586 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 16 | 5, 1 | ressval2 17261 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
| 17 | 16 | fveq2d 6885 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 18 | 15, 17 | eqtr4d 2774 | . . . 4 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 19 | 18 | 3expib 1122 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
| 20 | 9, 19 | pm2.61i 182 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 21 | in0 4375 | . . . . 5 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 22 | fvprc 6873 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
| 23 | 1, 22 | eqtrid 2783 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → 𝐵 = ∅) |
| 24 | 23 | ineq2d 4200 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (𝐴 ∩ ∅)) |
| 25 | 21, 24, 22 | 3eqtr4a 2797 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑊)) |
| 26 | base0 17238 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 27 | 26 | eqcomi 2745 | . . . . 5 ⊢ (Base‘∅) = ∅ |
| 28 | reldmress 17258 | . . . . 5 ⊢ Rel dom ↾s | |
| 29 | 27, 5, 28 | oveqprc 17216 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅)) |
| 30 | 25, 29 | eqtrd 2771 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 31 | 30 | adantr 480 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 32 | 20, 31 | pm2.61ian 811 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 〈cop 4612 ‘cfv 6536 (class class class)co 7410 sSet csts 17187 ndxcnx 17217 Basecbs 17233 ↾s cress 17256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 |
| This theorem is referenced by: ressbasssg 17263 ressbas2 17264 ressbasssOLD 17266 ressress 17273 rescabs 17851 resscatc 18127 idresefmnd 18882 smndex1bas 18889 resscntz 19321 idrespermg 19397 opprsubg 20317 subrngpropd 20533 subrgpropd 20573 sralmod 21150 lidlssbas 21179 lidlbas 21180 resstopn 23129 resstps 23130 ressuss 24206 ressxms 24469 ressms 24470 cphsubrglem 25134 cphsscph 25208 resspos 32951 resstos 32952 xrge0base 33011 xrge00 33012 submomnd 33083 suborng 33342 gsumge0cl 46367 sge0tsms 46376 uzlidlring 48177 dmatALTbas 48344 |
| Copyright terms: Public domain | W3C validator |