| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbas | Structured version Visualization version GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbas | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | simp1 1136 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐵 ⊆ 𝐴) | |
| 3 | sseqin2 4170 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = 𝐵) |
| 5 | ressbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 6 | 5, 1 | ressid2 17145 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 7 | 6 | fveq2d 6826 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘𝑊)) |
| 8 | 1, 4, 7 | 3eqtr4a 2792 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 9 | 8 | 3expib 1122 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
| 10 | simp2 1137 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ V) | |
| 11 | 1 | fvexi 6836 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 12 | 11 | inex2 5254 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 13 | baseid 17123 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
| 14 | 13 | setsid 17118 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 15 | 10, 12, 14 | sylancl 586 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 16 | 5, 1 | ressval2 17146 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
| 17 | 16 | fveq2d 6826 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 18 | 15, 17 | eqtr4d 2769 | . . . 4 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 19 | 18 | 3expib 1122 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
| 20 | 9, 19 | pm2.61i 182 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 21 | in0 4342 | . . . . 5 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 22 | fvprc 6814 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
| 23 | 1, 22 | eqtrid 2778 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → 𝐵 = ∅) |
| 24 | 23 | ineq2d 4167 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (𝐴 ∩ ∅)) |
| 25 | 21, 24, 22 | 3eqtr4a 2792 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑊)) |
| 26 | base0 17125 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 27 | 26 | eqcomi 2740 | . . . . 5 ⊢ (Base‘∅) = ∅ |
| 28 | reldmress 17143 | . . . . 5 ⊢ Rel dom ↾s | |
| 29 | 27, 5, 28 | oveqprc 17103 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅)) |
| 30 | 25, 29 | eqtrd 2766 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 31 | 30 | adantr 480 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 32 | 20, 31 | pm2.61ian 811 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 〈cop 4579 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 ndxcnx 17104 Basecbs 17120 ↾s cress 17141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 |
| This theorem is referenced by: ressbasssg 17148 ressbas2 17149 ressbasssOLD 17151 ressress 17158 xrge0base 17511 rescabs 17740 resscatc 18016 resspos 18335 resstos 18336 idresefmnd 18807 smndex1bas 18814 resscntz 19245 idrespermg 19323 submomnd 20044 opprsubg 20270 subrngpropd 20483 subrgpropd 20523 suborng 20791 sralmod 21121 lidlssbas 21150 lidlbas 21151 resstopn 23101 resstps 23102 ressuss 24177 ressxms 24440 ressms 24441 cphsubrglem 25104 cphsscph 25178 xrge00 32995 gsumge0cl 46417 sge0tsms 46426 uzlidlring 48274 dmatALTbas 48441 |
| Copyright terms: Public domain | W3C validator |