MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbas Structured version   Visualization version   GIF version

Theorem ressbas 17262
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbas (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))

Proof of Theorem ressbas
StepHypRef Expression
1 ressbas.b . . . . 5 𝐵 = (Base‘𝑊)
2 simp1 1136 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝐵𝐴)
3 sseqin2 4203 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
42, 3sylib 218 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = 𝐵)
5 ressbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
65, 1ressid2 17260 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
76fveq2d 6885 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘𝑊))
81, 4, 73eqtr4a 2797 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
983expib 1122 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
10 simp2 1137 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
111fvexi 6895 . . . . . . 7 𝐵 ∈ V
1211inex2 5293 . . . . . 6 (𝐴𝐵) ∈ V
13 baseid 17236 . . . . . . 7 Base = Slot (Base‘ndx)
1413setsid 17231 . . . . . 6 ((𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1510, 12, 14sylancl 586 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
165, 1ressval2 17261 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1716fveq2d 6885 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1815, 17eqtr4d 2774 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
19183expib 1122 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
209, 19pm2.61i 182 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
21 in0 4375 . . . . 5 (𝐴 ∩ ∅) = ∅
22 fvprc 6873 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
231, 22eqtrid 2783 . . . . . 6 𝑊 ∈ V → 𝐵 = ∅)
2423ineq2d 4200 . . . . 5 𝑊 ∈ V → (𝐴𝐵) = (𝐴 ∩ ∅))
2521, 24, 223eqtr4a 2797 . . . 4 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑊))
26 base0 17238 . . . . . 6 ∅ = (Base‘∅)
2726eqcomi 2745 . . . . 5 (Base‘∅) = ∅
28 reldmress 17258 . . . . 5 Rel dom ↾s
2927, 5, 28oveqprc 17216 . . . 4 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅))
3025, 29eqtrd 2771 . . 3 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑅))
3130adantr 480 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
3220, 31pm2.61ian 811 1 (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  wss 3931  c0 4313  cop 4612  cfv 6536  (class class class)co 7410   sSet csts 17187  ndxcnx 17217  Basecbs 17233  s cress 17256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257
This theorem is referenced by:  ressbasssg  17263  ressbas2  17264  ressbasssOLD  17266  ressress  17273  rescabs  17851  resscatc  18127  idresefmnd  18882  smndex1bas  18889  resscntz  19321  idrespermg  19397  opprsubg  20317  subrngpropd  20533  subrgpropd  20573  sralmod  21150  lidlssbas  21179  lidlbas  21180  resstopn  23129  resstps  23130  ressuss  24206  ressxms  24469  ressms  24470  cphsubrglem  25134  cphsscph  25208  resspos  32951  resstos  32952  xrge0base  33011  xrge00  33012  submomnd  33083  suborng  33342  gsumge0cl  46367  sge0tsms  46376  uzlidlring  48177  dmatALTbas  48344
  Copyright terms: Public domain W3C validator