Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressbas | Structured version Visualization version GIF version |
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbas | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
2 | simp1 1134 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐵 ⊆ 𝐴) | |
3 | sseqin2 4154 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = 𝐵) |
5 | ressbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
6 | 5, 1 | ressid2 16926 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
7 | 6 | fveq2d 6772 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘𝑊)) |
8 | 1, 4, 7 | 3eqtr4a 2805 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 8 | 3expib 1120 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
10 | simp2 1135 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ V) | |
11 | 1 | fvexi 6782 | . . . . . . 7 ⊢ 𝐵 ∈ V |
12 | 11 | inex2 5245 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ∈ V |
13 | baseid 16896 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
14 | 13 | setsid 16890 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
15 | 10, 12, 14 | sylancl 585 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
16 | 5, 1 | ressval2 16927 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
17 | 16 | fveq2d 6772 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
18 | 15, 17 | eqtr4d 2782 | . . . 4 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
19 | 18 | 3expib 1120 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
20 | 9, 19 | pm2.61i 182 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
21 | in0 4330 | . . . . 5 ⊢ (𝐴 ∩ ∅) = ∅ | |
22 | fvprc 6760 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
23 | 1, 22 | eqtrid 2791 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → 𝐵 = ∅) |
24 | 23 | ineq2d 4151 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (𝐴 ∩ ∅)) |
25 | 21, 24, 22 | 3eqtr4a 2805 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑊)) |
26 | base0 16898 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
27 | 26 | eqcomi 2748 | . . . . 5 ⊢ (Base‘∅) = ∅ |
28 | reldmress 16924 | . . . . 5 ⊢ Rel dom ↾s | |
29 | 27, 5, 28 | oveqprc 16874 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅)) |
30 | 25, 29 | eqtrd 2779 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
31 | 30 | adantr 480 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
32 | 20, 31 | pm2.61ian 808 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 〈cop 4572 ‘cfv 6430 (class class class)co 7268 sSet csts 16845 ndxcnx 16875 Basecbs 16893 ↾s cress 16922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 |
This theorem is referenced by: ressbas2 16930 ressbasss 16931 ressress 16939 rescabs 17528 rescabsOLD 17529 resscatc 17805 idresefmnd 18519 smndex1bas 18526 resscntz 18919 idrespermg 19000 opprsubg 19859 subrgpropd 20040 sralmod 20438 resstopn 22318 resstps 22319 ressuss 23395 ressxms 23662 ressms 23663 cphsubrglem 24322 cphsscph 24396 resspos 31223 resstos 31224 xrge0base 31273 xrge00 31274 submomnd 31315 suborng 31493 gsumge0cl 43863 sge0tsms 43872 lidlssbas 45432 lidlbas 45433 uzlidlring 45439 dmatALTbas 45694 |
Copyright terms: Public domain | W3C validator |