MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbas Structured version   Visualization version   GIF version

Theorem ressbas 16928
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbas (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))

Proof of Theorem ressbas
StepHypRef Expression
1 ressbas.b . . . . 5 𝐵 = (Base‘𝑊)
2 simp1 1134 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝐵𝐴)
3 sseqin2 4154 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
42, 3sylib 217 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = 𝐵)
5 ressbas.r . . . . . . 7 𝑅 = (𝑊s 𝐴)
65, 1ressid2 16926 . . . . . 6 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
76fveq2d 6772 . . . . 5 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘𝑊))
81, 4, 73eqtr4a 2805 . . . 4 ((𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
983expib 1120 . . 3 (𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
10 simp2 1135 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑊 ∈ V)
111fvexi 6782 . . . . . . 7 𝐵 ∈ V
1211inex2 5245 . . . . . 6 (𝐴𝐵) ∈ V
13 baseid 16896 . . . . . . 7 Base = Slot (Base‘ndx)
1413setsid 16890 . . . . . 6 ((𝑊 ∈ V ∧ (𝐴𝐵) ∈ V) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1510, 12, 14sylancl 585 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
165, 1ressval2 16927 . . . . . 6 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
1716fveq2d 6772 . . . . 5 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
1815, 17eqtr4d 2782 . . . 4 ((¬ 𝐵𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
19183expib 1120 . . 3 𝐵𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅)))
209, 19pm2.61i 182 . 2 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
21 in0 4330 . . . . 5 (𝐴 ∩ ∅) = ∅
22 fvprc 6760 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
231, 22eqtrid 2791 . . . . . 6 𝑊 ∈ V → 𝐵 = ∅)
2423ineq2d 4151 . . . . 5 𝑊 ∈ V → (𝐴𝐵) = (𝐴 ∩ ∅))
2521, 24, 223eqtr4a 2805 . . . 4 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑊))
26 base0 16898 . . . . . 6 ∅ = (Base‘∅)
2726eqcomi 2748 . . . . 5 (Base‘∅) = ∅
28 reldmress 16924 . . . . 5 Rel dom ↾s
2927, 5, 28oveqprc 16874 . . . 4 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅))
3025, 29eqtrd 2779 . . 3 𝑊 ∈ V → (𝐴𝐵) = (Base‘𝑅))
3130adantr 480 . 2 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐴𝐵) = (Base‘𝑅))
3220, 31pm2.61ian 808 1 (𝐴𝑉 → (𝐴𝐵) = (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  Vcvv 3430  cin 3890  wss 3891  c0 4261  cop 4572  cfv 6430  (class class class)co 7268   sSet csts 16845  ndxcnx 16875  Basecbs 16893  s cress 16922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-1cn 10913  ax-addcl 10915
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-nn 11957  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923
This theorem is referenced by:  ressbas2  16930  ressbasss  16931  ressress  16939  rescabs  17528  rescabsOLD  17529  resscatc  17805  idresefmnd  18519  smndex1bas  18526  resscntz  18919  idrespermg  19000  opprsubg  19859  subrgpropd  20040  sralmod  20438  resstopn  22318  resstps  22319  ressuss  23395  ressxms  23662  ressms  23663  cphsubrglem  24322  cphsscph  24396  resspos  31223  resstos  31224  xrge0base  31273  xrge00  31274  submomnd  31315  suborng  31493  gsumge0cl  43863  sge0tsms  43872  lidlssbas  45432  lidlbas  45433  uzlidlring  45439  dmatALTbas  45694
  Copyright terms: Public domain W3C validator