Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressbas | Structured version Visualization version GIF version |
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbas | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
2 | simp1 1135 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐵 ⊆ 𝐴) | |
3 | sseqin2 4149 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = 𝐵) |
5 | ressbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
6 | 5, 1 | ressid2 16945 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
7 | 6 | fveq2d 6778 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘𝑊)) |
8 | 1, 4, 7 | 3eqtr4a 2804 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 8 | 3expib 1121 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
10 | simp2 1136 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ V) | |
11 | 1 | fvexi 6788 | . . . . . . 7 ⊢ 𝐵 ∈ V |
12 | 11 | inex2 5242 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ∈ V |
13 | baseid 16915 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
14 | 13 | setsid 16909 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
15 | 10, 12, 14 | sylancl 586 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
16 | 5, 1 | ressval2 16946 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
17 | 16 | fveq2d 6778 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
18 | 15, 17 | eqtr4d 2781 | . . . 4 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
19 | 18 | 3expib 1121 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
20 | 9, 19 | pm2.61i 182 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
21 | in0 4325 | . . . . 5 ⊢ (𝐴 ∩ ∅) = ∅ | |
22 | fvprc 6766 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
23 | 1, 22 | eqtrid 2790 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → 𝐵 = ∅) |
24 | 23 | ineq2d 4146 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (𝐴 ∩ ∅)) |
25 | 21, 24, 22 | 3eqtr4a 2804 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑊)) |
26 | base0 16917 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
27 | 26 | eqcomi 2747 | . . . . 5 ⊢ (Base‘∅) = ∅ |
28 | reldmress 16943 | . . . . 5 ⊢ Rel dom ↾s | |
29 | 27, 5, 28 | oveqprc 16893 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅)) |
30 | 25, 29 | eqtrd 2778 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
31 | 30 | adantr 481 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
32 | 20, 31 | pm2.61ian 809 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 〈cop 4567 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 ndxcnx 16894 Basecbs 16912 ↾s cress 16941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 |
This theorem is referenced by: ressbas2 16949 ressbasss 16950 ressress 16958 rescabs 17547 rescabsOLD 17548 resscatc 17824 idresefmnd 18538 smndex1bas 18545 resscntz 18938 idrespermg 19019 opprsubg 19878 subrgpropd 20059 sralmod 20457 resstopn 22337 resstps 22338 ressuss 23414 ressxms 23681 ressms 23682 cphsubrglem 24341 cphsscph 24415 resspos 31244 resstos 31245 xrge0base 31294 xrge00 31295 submomnd 31336 suborng 31514 gsumge0cl 43909 sge0tsms 43918 lidlssbas 45480 lidlbas 45481 uzlidlring 45487 dmatALTbas 45742 |
Copyright terms: Public domain | W3C validator |