MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbas Structured version   Visualization version   GIF version

Theorem ressbas 17183
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (π‘Š β†Ύs 𝐴)
ressbas.b 𝐡 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
ressbas (𝐴 ∈ 𝑉 β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))

Proof of Theorem ressbas
StepHypRef Expression
1 ressbas.b . . . . 5 𝐡 = (Baseβ€˜π‘Š)
2 simp1 1136 . . . . . 6 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝐡 βŠ† 𝐴)
3 sseqin2 4215 . . . . . 6 (𝐡 βŠ† 𝐴 ↔ (𝐴 ∩ 𝐡) = 𝐡)
42, 3sylib 217 . . . . 5 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = 𝐡)
5 ressbas.r . . . . . . 7 𝑅 = (π‘Š β†Ύs 𝐴)
65, 1ressid2 17181 . . . . . 6 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = π‘Š)
76fveq2d 6895 . . . . 5 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘Š))
81, 4, 73eqtr4a 2798 . . . 4 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
983expib 1122 . . 3 (𝐡 βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…)))
10 simp2 1137 . . . . . 6 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ π‘Š ∈ V)
111fvexi 6905 . . . . . . 7 𝐡 ∈ V
1211inex2 5318 . . . . . 6 (𝐴 ∩ 𝐡) ∈ V
13 baseid 17151 . . . . . . 7 Base = Slot (Baseβ€˜ndx)
1413setsid 17145 . . . . . 6 ((π‘Š ∈ V ∧ (𝐴 ∩ 𝐡) ∈ V) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
1510, 12, 14sylancl 586 . . . . 5 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
165, 1ressval2 17182 . . . . . 6 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ 𝑅 = (π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩))
1716fveq2d 6895 . . . . 5 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (Baseβ€˜π‘…) = (Baseβ€˜(π‘Š sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ 𝐡)⟩)))
1815, 17eqtr4d 2775 . . . 4 ((Β¬ 𝐡 βŠ† 𝐴 ∧ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
19183expib 1122 . . 3 (Β¬ 𝐡 βŠ† 𝐴 β†’ ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…)))
209, 19pm2.61i 182 . 2 ((π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
21 in0 4391 . . . . 5 (𝐴 ∩ βˆ…) = βˆ…
22 fvprc 6883 . . . . . . 7 (Β¬ π‘Š ∈ V β†’ (Baseβ€˜π‘Š) = βˆ…)
231, 22eqtrid 2784 . . . . . 6 (Β¬ π‘Š ∈ V β†’ 𝐡 = βˆ…)
2423ineq2d 4212 . . . . 5 (Β¬ π‘Š ∈ V β†’ (𝐴 ∩ 𝐡) = (𝐴 ∩ βˆ…))
2521, 24, 223eqtr4a 2798 . . . 4 (Β¬ π‘Š ∈ V β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘Š))
26 base0 17153 . . . . . 6 βˆ… = (Baseβ€˜βˆ…)
2726eqcomi 2741 . . . . 5 (Baseβ€˜βˆ…) = βˆ…
28 reldmress 17179 . . . . 5 Rel dom β†Ύs
2927, 5, 28oveqprc 17129 . . . 4 (Β¬ π‘Š ∈ V β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π‘…))
3025, 29eqtrd 2772 . . 3 (Β¬ π‘Š ∈ V β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
3130adantr 481 . 2 ((Β¬ π‘Š ∈ V ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
3220, 31pm2.61ian 810 1 (𝐴 ∈ 𝑉 β†’ (𝐴 ∩ 𝐡) = (Baseβ€˜π‘…))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  βŸ¨cop 4634  β€˜cfv 6543  (class class class)co 7411   sSet csts 17100  ndxcnx 17130  Basecbs 17148   β†Ύs cress 17177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-1cn 11170  ax-addcl 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-nn 12217  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178
This theorem is referenced by:  ressbasssg  17185  ressbas2  17186  ressbasssOLD  17188  ressress  17197  rescabs  17786  rescabsOLD  17787  resscatc  18063  idresefmnd  18816  smndex1bas  18823  resscntz  19238  idrespermg  19320  opprsubg  20243  subrngpropd  20456  subrgpropd  20498  sralmod  20954  lidlssbas  20979  lidlbas  20980  resstopn  22910  resstps  22911  ressuss  23987  ressxms  24254  ressms  24255  cphsubrglem  24918  cphsscph  24992  resspos  32391  resstos  32392  xrge0base  32441  xrge00  32442  submomnd  32486  suborng  32691  gsumge0cl  45386  sge0tsms  45395  uzlidlring  46916  dmatALTbas  47170
  Copyright terms: Public domain W3C validator