| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbas | Structured version Visualization version GIF version | ||
| Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbas | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | simp1 1136 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐵 ⊆ 𝐴) | |
| 3 | sseqin2 4186 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = 𝐵) |
| 5 | ressbas.r | . . . . . . 7 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 6 | 5, 1 | ressid2 17204 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑊) |
| 7 | 6 | fveq2d 6862 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘𝑊)) |
| 8 | 1, 4, 7 | 3eqtr4a 2790 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 9 | 8 | 3expib 1122 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
| 10 | simp2 1137 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑊 ∈ V) | |
| 11 | 1 | fvexi 6872 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 12 | 11 | inex2 5273 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 13 | baseid 17182 | . . . . . . 7 ⊢ Base = Slot (Base‘ndx) | |
| 14 | 13 | setsid 17177 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ (𝐴 ∩ 𝐵) ∈ V) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 15 | 10, 12, 14 | sylancl 586 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 16 | 5, 1 | ressval2 17205 | . . . . . 6 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
| 17 | 16 | fveq2d 6862 | . . . . 5 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (Base‘𝑅) = (Base‘(𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 18 | 15, 17 | eqtr4d 2767 | . . . 4 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 19 | 18 | 3expib 1122 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅))) |
| 20 | 9, 19 | pm2.61i 182 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 21 | in0 4358 | . . . . 5 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 22 | fvprc 6850 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
| 23 | 1, 22 | eqtrid 2776 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → 𝐵 = ∅) |
| 24 | 23 | ineq2d 4183 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (𝐴 ∩ ∅)) |
| 25 | 21, 24, 22 | 3eqtr4a 2790 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑊)) |
| 26 | base0 17184 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 27 | 26 | eqcomi 2738 | . . . . 5 ⊢ (Base‘∅) = ∅ |
| 28 | reldmress 17202 | . . . . 5 ⊢ Rel dom ↾s | |
| 29 | 27, 5, 28 | oveqprc 17162 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = (Base‘𝑅)) |
| 30 | 25, 29 | eqtrd 2764 | . . 3 ⊢ (¬ 𝑊 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 31 | 30 | adantr 480 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 32 | 20, 31 | pm2.61ian 811 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 〈cop 4595 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 |
| This theorem is referenced by: ressbasssg 17207 ressbas2 17208 ressbasssOLD 17210 ressress 17217 rescabs 17795 resscatc 18071 idresefmnd 18826 smndex1bas 18833 resscntz 19265 idrespermg 19341 opprsubg 20261 subrngpropd 20477 subrgpropd 20517 sralmod 21094 lidlssbas 21123 lidlbas 21124 resstopn 23073 resstps 23074 ressuss 24150 ressxms 24413 ressms 24414 cphsubrglem 25077 cphsscph 25151 resspos 32892 resstos 32893 xrge0base 32952 xrge00 32953 submomnd 33024 suborng 33293 gsumge0cl 46369 sge0tsms 46378 uzlidlring 48220 dmatALTbas 48387 |
| Copyright terms: Public domain | W3C validator |