Detailed syntax breakdown of Definition df-ttrcl
Step | Hyp | Ref
| Expression |
1 | | cR |
. . 3
class 𝑅 |
2 | 1 | cttrcl 33693 |
. 2
class t++𝑅 |
3 | | vf |
. . . . . . . 8
setvar 𝑓 |
4 | 3 | cv 1538 |
. . . . . . 7
class 𝑓 |
5 | | vn |
. . . . . . . . 9
setvar 𝑛 |
6 | 5 | cv 1538 |
. . . . . . . 8
class 𝑛 |
7 | 6 | csuc 6253 |
. . . . . . 7
class suc 𝑛 |
8 | 4, 7 | wfn 6413 |
. . . . . 6
wff 𝑓 Fn suc 𝑛 |
9 | | c0 4253 |
. . . . . . . . 9
class
∅ |
10 | 9, 4 | cfv 6418 |
. . . . . . . 8
class (𝑓‘∅) |
11 | | vx |
. . . . . . . . 9
setvar 𝑥 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑥 |
13 | 10, 12 | wceq 1539 |
. . . . . . 7
wff (𝑓‘∅) = 𝑥 |
14 | 6, 4 | cfv 6418 |
. . . . . . . 8
class (𝑓‘𝑛) |
15 | | vy |
. . . . . . . . 9
setvar 𝑦 |
16 | 15 | cv 1538 |
. . . . . . . 8
class 𝑦 |
17 | 14, 16 | wceq 1539 |
. . . . . . 7
wff (𝑓‘𝑛) = 𝑦 |
18 | 13, 17 | wa 395 |
. . . . . 6
wff ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) |
19 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
20 | 19 | cv 1538 |
. . . . . . . . 9
class 𝑚 |
21 | 20, 4 | cfv 6418 |
. . . . . . . 8
class (𝑓‘𝑚) |
22 | 20 | csuc 6253 |
. . . . . . . . 9
class suc 𝑚 |
23 | 22, 4 | cfv 6418 |
. . . . . . . 8
class (𝑓‘suc 𝑚) |
24 | 21, 23, 1 | wbr 5070 |
. . . . . . 7
wff (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) |
25 | 24, 19, 6 | wral 3063 |
. . . . . 6
wff
∀𝑚 ∈
𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) |
26 | 8, 18, 25 | w3a 1085 |
. . . . 5
wff (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) |
27 | 26, 3 | wex 1783 |
. . . 4
wff
∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) |
28 | | com 7687 |
. . . . 5
class
ω |
29 | | c1o 8260 |
. . . . 5
class
1o |
30 | 28, 29 | cdif 3880 |
. . . 4
class (ω
∖ 1o) |
31 | 27, 5, 30 | wrex 3064 |
. . 3
wff
∃𝑛 ∈
(ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) |
32 | 31, 11, 15 | copab 5132 |
. 2
class
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} |
33 | 2, 32 | wceq 1539 |
1
wff t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} |