| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | relttrcl 9753 | . . 3
⊢ Rel
t++𝑅 | 
| 2 | 1 | brrelex12i 5739 | . 2
⊢ (𝐴t++𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 3 |  | fvex 6918 | . . . . . . 7
⊢ (𝑓‘∅) ∈
V | 
| 4 |  | eleq1 2828 | . . . . . . 7
⊢ ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V)) | 
| 5 | 3, 4 | mpbii 233 | . . . . . 6
⊢ ((𝑓‘∅) = 𝐴 → 𝐴 ∈ V) | 
| 6 |  | fvex 6918 | . . . . . . 7
⊢ (𝑓‘𝑛) ∈ V | 
| 7 |  | eleq1 2828 | . . . . . . 7
⊢ ((𝑓‘𝑛) = 𝐵 → ((𝑓‘𝑛) ∈ V ↔ 𝐵 ∈ V)) | 
| 8 | 6, 7 | mpbii 233 | . . . . . 6
⊢ ((𝑓‘𝑛) = 𝐵 → 𝐵 ∈ V) | 
| 9 | 5, 8 | anim12i 613 | . . . . 5
⊢ (((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 10 | 9 | 3ad2ant2 1134 | . . . 4
⊢ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 11 | 10 | exlimiv 1929 | . . 3
⊢
(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 12 | 11 | rexlimivw 3150 | . 2
⊢
(∃𝑛 ∈
(ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 13 |  | eqeq2 2748 | . . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑓‘∅) = 𝑥 ↔ (𝑓‘∅) = 𝐴)) | 
| 14 | 13 | anbi1d 631 | . . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦))) | 
| 15 | 14 | 3anbi2d 1442 | . . . . 5
⊢ (𝑥 = 𝐴 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) | 
| 16 | 15 | exbidv 1920 | . . . 4
⊢ (𝑥 = 𝐴 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) | 
| 17 | 16 | rexbidv 3178 | . . 3
⊢ (𝑥 = 𝐴 → (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) | 
| 18 |  | eqeq2 2748 | . . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝑓‘𝑛) = 𝑦 ↔ (𝑓‘𝑛) = 𝐵)) | 
| 19 | 18 | anbi2d 630 | . . . . . 6
⊢ (𝑦 = 𝐵 → (((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵))) | 
| 20 | 19 | 3anbi2d 1442 | . . . . 5
⊢ (𝑦 = 𝐵 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) | 
| 21 | 20 | exbidv 1920 | . . . 4
⊢ (𝑦 = 𝐵 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) | 
| 22 | 21 | rexbidv 3178 | . . 3
⊢ (𝑦 = 𝐵 → (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) | 
| 23 |  | df-ttrcl 9749 | . . 3
⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | 
| 24 | 17, 22, 23 | brabg 5543 | . 2
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) | 
| 25 | 2, 12, 24 | pm5.21nii 378 | 1
⊢ (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |