MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brttrcl Structured version   Visualization version   GIF version

Theorem brttrcl 9754
Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 18-Aug-2024.)
Assertion
Ref Expression
brttrcl (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Distinct variable groups:   𝐴,𝑛,𝑓,𝑎   𝐵,𝑛,𝑓,𝑎   𝑅,𝑛,𝑓,𝑎

Proof of Theorem brttrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relttrcl 9753 . . 3 Rel t++𝑅
21brrelex12i 5739 . 2 (𝐴t++𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 fvex 6918 . . . . . . 7 (𝑓‘∅) ∈ V
4 eleq1 2828 . . . . . . 7 ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V))
53, 4mpbii 233 . . . . . 6 ((𝑓‘∅) = 𝐴𝐴 ∈ V)
6 fvex 6918 . . . . . . 7 (𝑓𝑛) ∈ V
7 eleq1 2828 . . . . . . 7 ((𝑓𝑛) = 𝐵 → ((𝑓𝑛) ∈ V ↔ 𝐵 ∈ V))
86, 7mpbii 233 . . . . . 6 ((𝑓𝑛) = 𝐵𝐵 ∈ V)
95, 8anim12i 613 . . . . 5 (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1093ad2ant2 1134 . . . 4 ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1110exlimiv 1929 . . 3 (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1211rexlimivw 3150 . 2 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
13 eqeq2 2748 . . . . . . 7 (𝑥 = 𝐴 → ((𝑓‘∅) = 𝑥 ↔ (𝑓‘∅) = 𝐴))
1413anbi1d 631 . . . . . 6 (𝑥 = 𝐴 → (((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦)))
15143anbi2d 1442 . . . . 5 (𝑥 = 𝐴 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1615exbidv 1920 . . . 4 (𝑥 = 𝐴 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1716rexbidv 3178 . . 3 (𝑥 = 𝐴 → (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
18 eqeq2 2748 . . . . . . 7 (𝑦 = 𝐵 → ((𝑓𝑛) = 𝑦 ↔ (𝑓𝑛) = 𝐵))
1918anbi2d 630 . . . . . 6 (𝑦 = 𝐵 → (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵)))
20193anbi2d 1442 . . . . 5 (𝑦 = 𝐵 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2120exbidv 1920 . . . 4 (𝑦 = 𝐵 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2221rexbidv 3178 . . 3 (𝑦 = 𝐵 → (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
23 df-ttrcl 9749 . . 3 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
2417, 22, 23brabg 5543 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
252, 12, 24pm5.21nii 378 1 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  cdif 3947  c0 4332   class class class wbr 5142  suc csuc 6385   Fn wfn 6555  cfv 6560  ωcom 7888  1oc1o 8500  t++cttrcl 9748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691  df-iota 6513  df-fv 6568  df-ttrcl 9749
This theorem is referenced by:  brttrcl2  9755  ssttrcl  9756  ttrcltr  9757
  Copyright terms: Public domain W3C validator