MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brttrcl Structured version   Visualization version   GIF version

Theorem brttrcl 9708
Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 18-Aug-2024.)
Assertion
Ref Expression
brttrcl (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Distinct variable groups:   𝐴,𝑛,𝑓,𝑎   𝐵,𝑛,𝑓,𝑎   𝑅,𝑛,𝑓,𝑎

Proof of Theorem brttrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relttrcl 9707 . . 3 Rel t++𝑅
21brrelex12i 5732 . 2 (𝐴t++𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 fvex 6905 . . . . . . 7 (𝑓‘∅) ∈ V
4 eleq1 2822 . . . . . . 7 ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V))
53, 4mpbii 232 . . . . . 6 ((𝑓‘∅) = 𝐴𝐴 ∈ V)
6 fvex 6905 . . . . . . 7 (𝑓𝑛) ∈ V
7 eleq1 2822 . . . . . . 7 ((𝑓𝑛) = 𝐵 → ((𝑓𝑛) ∈ V ↔ 𝐵 ∈ V))
86, 7mpbii 232 . . . . . 6 ((𝑓𝑛) = 𝐵𝐵 ∈ V)
95, 8anim12i 614 . . . . 5 (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1093ad2ant2 1135 . . . 4 ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1110exlimiv 1934 . . 3 (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1211rexlimivw 3152 . 2 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
13 eqeq2 2745 . . . . . . 7 (𝑥 = 𝐴 → ((𝑓‘∅) = 𝑥 ↔ (𝑓‘∅) = 𝐴))
1413anbi1d 631 . . . . . 6 (𝑥 = 𝐴 → (((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦)))
15143anbi2d 1442 . . . . 5 (𝑥 = 𝐴 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1615exbidv 1925 . . . 4 (𝑥 = 𝐴 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1716rexbidv 3179 . . 3 (𝑥 = 𝐴 → (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
18 eqeq2 2745 . . . . . . 7 (𝑦 = 𝐵 → ((𝑓𝑛) = 𝑦 ↔ (𝑓𝑛) = 𝐵))
1918anbi2d 630 . . . . . 6 (𝑦 = 𝐵 → (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵)))
20193anbi2d 1442 . . . . 5 (𝑦 = 𝐵 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2120exbidv 1925 . . . 4 (𝑦 = 𝐵 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2221rexbidv 3179 . . 3 (𝑦 = 𝐵 → (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
23 df-ttrcl 9703 . . 3 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
2417, 22, 23brabg 5540 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
252, 12, 24pm5.21nii 380 1 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  cdif 3946  c0 4323   class class class wbr 5149  suc csuc 6367   Fn wfn 6539  cfv 6544  ωcom 7855  1oc1o 8459  t++cttrcl 9702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-iota 6496  df-fv 6552  df-ttrcl 9703
This theorem is referenced by:  brttrcl2  9709  ssttrcl  9710  ttrcltr  9711
  Copyright terms: Public domain W3C validator