| Step | Hyp | Ref
| Expression |
| 1 | | relttrcl 9731 |
. . 3
⊢ Rel
t++𝑅 |
| 2 | 1 | brrelex12i 5714 |
. 2
⊢ (𝐴t++𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | | fvex 6894 |
. . . . . . 7
⊢ (𝑓‘∅) ∈
V |
| 4 | | eleq1 2823 |
. . . . . . 7
⊢ ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V)) |
| 5 | 3, 4 | mpbii 233 |
. . . . . 6
⊢ ((𝑓‘∅) = 𝐴 → 𝐴 ∈ V) |
| 6 | | fvex 6894 |
. . . . . . 7
⊢ (𝑓‘𝑛) ∈ V |
| 7 | | eleq1 2823 |
. . . . . . 7
⊢ ((𝑓‘𝑛) = 𝐵 → ((𝑓‘𝑛) ∈ V ↔ 𝐵 ∈ V)) |
| 8 | 6, 7 | mpbii 233 |
. . . . . 6
⊢ ((𝑓‘𝑛) = 𝐵 → 𝐵 ∈ V) |
| 9 | 5, 8 | anim12i 613 |
. . . . 5
⊢ (((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 10 | 9 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 11 | 10 | exlimiv 1930 |
. . 3
⊢
(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 12 | 11 | rexlimivw 3138 |
. 2
⊢
(∃𝑛 ∈
(ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 13 | | eqeq2 2748 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑓‘∅) = 𝑥 ↔ (𝑓‘∅) = 𝐴)) |
| 14 | 13 | anbi1d 631 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦))) |
| 15 | 14 | 3anbi2d 1443 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 16 | 15 | exbidv 1921 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 17 | 16 | rexbidv 3165 |
. . 3
⊢ (𝑥 = 𝐴 → (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 18 | | eqeq2 2748 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝑓‘𝑛) = 𝑦 ↔ (𝑓‘𝑛) = 𝐵)) |
| 19 | 18 | anbi2d 630 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵))) |
| 20 | 19 | 3anbi2d 1443 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 21 | 20 | exbidv 1921 |
. . . 4
⊢ (𝑦 = 𝐵 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 22 | 21 | rexbidv 3165 |
. . 3
⊢ (𝑦 = 𝐵 → (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 23 | | df-ttrcl 9727 |
. . 3
⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
| 24 | 17, 22, 23 | brabg 5519 |
. 2
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
| 25 | 2, 12, 24 | pm5.21nii 378 |
1
⊢ (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |