Step | Hyp | Ref
| Expression |
1 | | relttrcl 9470 |
. . 3
⊢ Rel
t++𝑅 |
2 | 1 | brrelex12i 5642 |
. 2
⊢ (𝐴t++𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | | fvex 6787 |
. . . . . . 7
⊢ (𝑓‘∅) ∈
V |
4 | | eleq1 2826 |
. . . . . . 7
⊢ ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V)) |
5 | 3, 4 | mpbii 232 |
. . . . . 6
⊢ ((𝑓‘∅) = 𝐴 → 𝐴 ∈ V) |
6 | | fvex 6787 |
. . . . . . 7
⊢ (𝑓‘𝑛) ∈ V |
7 | | eleq1 2826 |
. . . . . . 7
⊢ ((𝑓‘𝑛) = 𝐵 → ((𝑓‘𝑛) ∈ V ↔ 𝐵 ∈ V)) |
8 | 6, 7 | mpbii 232 |
. . . . . 6
⊢ ((𝑓‘𝑛) = 𝐵 → 𝐵 ∈ V) |
9 | 5, 8 | anim12i 613 |
. . . . 5
⊢ (((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
10 | 9 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
11 | 10 | exlimiv 1933 |
. . 3
⊢
(∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
12 | 11 | rexlimivw 3211 |
. 2
⊢
(∃𝑛 ∈
(ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑓‘∅) = 𝑥 ↔ (𝑓‘∅) = 𝐴)) |
14 | 13 | anbi1d 630 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦))) |
15 | 14 | 3anbi2d 1440 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
16 | 15 | exbidv 1924 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
17 | 16 | rexbidv 3226 |
. . 3
⊢ (𝑥 = 𝐴 → (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
18 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝑓‘𝑛) = 𝑦 ↔ (𝑓‘𝑛) = 𝐵)) |
19 | 18 | anbi2d 629 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵))) |
20 | 19 | 3anbi2d 1440 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
21 | 20 | exbidv 1924 |
. . . 4
⊢ (𝑦 = 𝐵 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
22 | 21 | rexbidv 3226 |
. . 3
⊢ (𝑦 = 𝐵 → (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
23 | | df-ttrcl 9466 |
. . 3
⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
24 | 17, 22, 23 | brabg 5452 |
. 2
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)))) |
25 | 2, 12, 24 | pm5.21nii 380 |
1
⊢ (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |