MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brttrcl Structured version   Visualization version   GIF version

Theorem brttrcl 9642
Description: Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 18-Aug-2024.)
Assertion
Ref Expression
brttrcl (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Distinct variable groups:   𝐴,𝑛,𝑓,𝑎   𝐵,𝑛,𝑓,𝑎   𝑅,𝑛,𝑓,𝑎

Proof of Theorem brttrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relttrcl 9641 . . 3 Rel t++𝑅
21brrelex12i 5686 . 2 (𝐴t++𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 fvex 6853 . . . . . . 7 (𝑓‘∅) ∈ V
4 eleq1 2816 . . . . . . 7 ((𝑓‘∅) = 𝐴 → ((𝑓‘∅) ∈ V ↔ 𝐴 ∈ V))
53, 4mpbii 233 . . . . . 6 ((𝑓‘∅) = 𝐴𝐴 ∈ V)
6 fvex 6853 . . . . . . 7 (𝑓𝑛) ∈ V
7 eleq1 2816 . . . . . . 7 ((𝑓𝑛) = 𝐵 → ((𝑓𝑛) ∈ V ↔ 𝐵 ∈ V))
86, 7mpbii 233 . . . . . 6 ((𝑓𝑛) = 𝐵𝐵 ∈ V)
95, 8anim12i 613 . . . . 5 (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1093ad2ant2 1134 . . . 4 ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1110exlimiv 1930 . . 3 (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1211rexlimivw 3130 . 2 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
13 eqeq2 2741 . . . . . . 7 (𝑥 = 𝐴 → ((𝑓‘∅) = 𝑥 ↔ (𝑓‘∅) = 𝐴))
1413anbi1d 631 . . . . . 6 (𝑥 = 𝐴 → (((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦)))
15143anbi2d 1443 . . . . 5 (𝑥 = 𝐴 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1615exbidv 1921 . . . 4 (𝑥 = 𝐴 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
1716rexbidv 3157 . . 3 (𝑥 = 𝐴 → (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
18 eqeq2 2741 . . . . . . 7 (𝑦 = 𝐵 → ((𝑓𝑛) = 𝑦 ↔ (𝑓𝑛) = 𝐵))
1918anbi2d 630 . . . . . 6 (𝑦 = 𝐵 → (((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ↔ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵)))
20193anbi2d 1443 . . . . 5 (𝑦 = 𝐵 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2120exbidv 1921 . . . 4 (𝑦 = 𝐵 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
2221rexbidv 3157 . . 3 (𝑦 = 𝐵 → (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
23 df-ttrcl 9637 . . 3 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
2417, 22, 23brabg 5494 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
252, 12, 24pm5.21nii 378 1 (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓𝑛) = 𝐵) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  c0 4292   class class class wbr 5102  suc csuc 6322   Fn wfn 6494  cfv 6499  ωcom 7822  1oc1o 8404  t++cttrcl 9636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-iota 6452  df-fv 6507  df-ttrcl 9637
This theorem is referenced by:  brttrcl2  9643  ssttrcl  9644  ttrcltr  9645
  Copyright terms: Public domain W3C validator