MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnttrcl Structured version   Visualization version   GIF version

Theorem rnttrcl 9791
Description: The range of a transitive closure is the same as the range of the original class. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
rnttrcl ran t++𝑅 = ran 𝑅

Proof of Theorem rnttrcl
Dummy variables 𝑥 𝑦 𝑓 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 9777 . . . . 5 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
21rneqi 5962 . . . 4 ran t++𝑅 = ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
3 rnopab 5979 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} = {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
42, 3eqtri 2768 . . 3 ran t++𝑅 = {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
5 fveq2 6920 . . . . . . . . . . . 12 (𝑎 = 𝑛 → (𝑓𝑎) = (𝑓 𝑛))
6 suceq 6461 . . . . . . . . . . . . 13 (𝑎 = 𝑛 → suc 𝑎 = suc 𝑛)
76fveq2d 6924 . . . . . . . . . . . 12 (𝑎 = 𝑛 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑛))
85, 7breq12d 5179 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓 𝑛)𝑅(𝑓‘suc 𝑛)))
9 simpr3 1196 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
10 df-1o 8522 . . . . . . . . . . . . . . . 16 1o = suc ∅
1110difeq2i 4146 . . . . . . . . . . . . . . 15 (ω ∖ 1o) = (ω ∖ suc ∅)
1211eleq2i 2836 . . . . . . . . . . . . . 14 (𝑛 ∈ (ω ∖ 1o) ↔ 𝑛 ∈ (ω ∖ suc ∅))
13 peano1 7927 . . . . . . . . . . . . . . 15 ∅ ∈ ω
14 eldifsucnn 8720 . . . . . . . . . . . . . . 15 (∅ ∈ ω → (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥))
1513, 14ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥)
16 dif0 4400 . . . . . . . . . . . . . . 15 (ω ∖ ∅) = ω
1716rexeqi 3333 . . . . . . . . . . . . . 14 (∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
1812, 15, 173bitri 297 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
19 nnord 7911 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ω → Ord 𝑥)
20 ordunisuc 7868 . . . . . . . . . . . . . . . . 17 (Ord 𝑥 suc 𝑥 = 𝑥)
2119, 20syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ω → suc 𝑥 = 𝑥)
22 vex 3492 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
2322sucid 6477 . . . . . . . . . . . . . . . 16 𝑥 ∈ suc 𝑥
2421, 23eqeltrdi 2852 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → suc 𝑥 ∈ suc 𝑥)
25 unieq 4942 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥 𝑛 = suc 𝑥)
26 id 22 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥𝑛 = suc 𝑥)
2725, 26eleq12d 2838 . . . . . . . . . . . . . . 15 (𝑛 = suc 𝑥 → ( 𝑛𝑛 suc 𝑥 ∈ suc 𝑥))
2824, 27syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝑥 ∈ ω → (𝑛 = suc 𝑥 𝑛𝑛))
2928rexlimiv 3154 . . . . . . . . . . . . 13 (∃𝑥 ∈ ω 𝑛 = suc 𝑥 𝑛𝑛)
3018, 29sylbi 217 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → 𝑛𝑛)
3130adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑛𝑛)
328, 9, 31rspcdva 3636 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 𝑛)𝑅(𝑓‘suc 𝑛))
33 suceq 6461 . . . . . . . . . . . . . . . . 17 ( suc 𝑥 = 𝑥 → suc suc 𝑥 = suc 𝑥)
3421, 33syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ω → suc suc 𝑥 = suc 𝑥)
35 suceq 6461 . . . . . . . . . . . . . . . . . 18 ( 𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥)
3625, 35syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥)
3736, 26eqeq12d 2756 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥 → (suc 𝑛 = 𝑛 ↔ suc suc 𝑥 = suc 𝑥))
3834, 37syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → (𝑛 = suc 𝑥 → suc 𝑛 = 𝑛))
3938rexlimiv 3154 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ω 𝑛 = suc 𝑥 → suc 𝑛 = 𝑛)
4018, 39sylbi 217 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) → suc 𝑛 = 𝑛)
4140fveq2d 6924 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → (𝑓‘suc 𝑛) = (𝑓𝑛))
4241adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑛) = (𝑓𝑛))
43 simpr2r 1233 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓𝑛) = 𝑦)
4442, 43eqtrd 2780 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑛) = 𝑦)
4532, 44breqtrd 5192 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 𝑛)𝑅𝑦)
46 fvex 6933 . . . . . . . . . 10 (𝑓 𝑛) ∈ V
47 vex 3492 . . . . . . . . . 10 𝑦 ∈ V
4846, 47brelrn 5967 . . . . . . . . 9 ((𝑓 𝑛)𝑅𝑦𝑦 ∈ ran 𝑅)
4945, 48syl 17 . . . . . . . 8 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑦 ∈ ran 𝑅)
5049ex 412 . . . . . . 7 (𝑛 ∈ (ω ∖ 1o) → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅))
5150exlimdv 1932 . . . . . 6 (𝑛 ∈ (ω ∖ 1o) → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅))
5251rexlimiv 3154 . . . . 5 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅)
5352exlimiv 1929 . . . 4 (∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅)
5453abssi 4093 . . 3 {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} ⊆ ran 𝑅
554, 54eqsstri 4043 . 2 ran t++𝑅 ⊆ ran 𝑅
56 rnresv 6232 . . 3 ran (𝑅 ↾ V) = ran 𝑅
57 relres 6035 . . . . . 6 Rel (𝑅 ↾ V)
58 ssttrcl 9784 . . . . . 6 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
5957, 58ax-mp 5 . . . . 5 (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)
60 ttrclresv 9786 . . . . 5 t++(𝑅 ↾ V) = t++𝑅
6159, 60sseqtri 4045 . . . 4 (𝑅 ↾ V) ⊆ t++𝑅
6261rnssi 5965 . . 3 ran (𝑅 ↾ V) ⊆ ran t++𝑅
6356, 62eqsstrri 4044 . 2 ran 𝑅 ⊆ ran t++𝑅
6455, 63eqssi 4025 1 ran t++𝑅 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  c0 4352   cuni 4931   class class class wbr 5166  {copab 5228  ran crn 5701  cres 5702  Rel wrel 5705  Ord word 6394  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903  1oc1o 8515  t++cttrcl 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-ttrcl 9777
This theorem is referenced by:  ttrclexg  9792
  Copyright terms: Public domain W3C validator