Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnttrcl Structured version   Visualization version   GIF version

Theorem rnttrcl 33708
Description: The range of a transitive closure is the same as the range of the original class. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
rnttrcl ran t++𝑅 = ran 𝑅

Proof of Theorem rnttrcl
Dummy variables 𝑥 𝑦 𝑓 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 33694 . . . . 5 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
21rneqi 5835 . . . 4 ran t++𝑅 = ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
3 rnopab 5852 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} = {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
42, 3eqtri 2766 . . 3 ran t++𝑅 = {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
5 fveq2 6756 . . . . . . . . . . . 12 (𝑎 = 𝑛 → (𝑓𝑎) = (𝑓 𝑛))
6 suceq 6316 . . . . . . . . . . . . 13 (𝑎 = 𝑛 → suc 𝑎 = suc 𝑛)
76fveq2d 6760 . . . . . . . . . . . 12 (𝑎 = 𝑛 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑛))
85, 7breq12d 5083 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓 𝑛)𝑅(𝑓‘suc 𝑛)))
9 simpr3 1194 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
10 df-1o 8267 . . . . . . . . . . . . . . . 16 1o = suc ∅
1110difeq2i 4050 . . . . . . . . . . . . . . 15 (ω ∖ 1o) = (ω ∖ suc ∅)
1211eleq2i 2830 . . . . . . . . . . . . . 14 (𝑛 ∈ (ω ∖ 1o) ↔ 𝑛 ∈ (ω ∖ suc ∅))
13 peano1 7710 . . . . . . . . . . . . . . 15 ∅ ∈ ω
14 eldifsucnn 33597 . . . . . . . . . . . . . . 15 (∅ ∈ ω → (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥))
1513, 14ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥)
16 dif0 4303 . . . . . . . . . . . . . . 15 (ω ∖ ∅) = ω
1716rexeqi 3338 . . . . . . . . . . . . . 14 (∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
1812, 15, 173bitri 296 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
19 nnord 7695 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ω → Ord 𝑥)
20 ordunisuc 7654 . . . . . . . . . . . . . . . . 17 (Ord 𝑥 suc 𝑥 = 𝑥)
2119, 20syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ω → suc 𝑥 = 𝑥)
22 vex 3426 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
2322sucid 6330 . . . . . . . . . . . . . . . 16 𝑥 ∈ suc 𝑥
2421, 23eqeltrdi 2847 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → suc 𝑥 ∈ suc 𝑥)
25 unieq 4847 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥 𝑛 = suc 𝑥)
26 id 22 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥𝑛 = suc 𝑥)
2725, 26eleq12d 2833 . . . . . . . . . . . . . . 15 (𝑛 = suc 𝑥 → ( 𝑛𝑛 suc 𝑥 ∈ suc 𝑥))
2824, 27syl5ibrcom 246 . . . . . . . . . . . . . 14 (𝑥 ∈ ω → (𝑛 = suc 𝑥 𝑛𝑛))
2928rexlimiv 3208 . . . . . . . . . . . . 13 (∃𝑥 ∈ ω 𝑛 = suc 𝑥 𝑛𝑛)
3018, 29sylbi 216 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → 𝑛𝑛)
3130adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑛𝑛)
328, 9, 31rspcdva 3554 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 𝑛)𝑅(𝑓‘suc 𝑛))
33 suceq 6316 . . . . . . . . . . . . . . . . 17 ( suc 𝑥 = 𝑥 → suc suc 𝑥 = suc 𝑥)
3421, 33syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ω → suc suc 𝑥 = suc 𝑥)
35 suceq 6316 . . . . . . . . . . . . . . . . . 18 ( 𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥)
3625, 35syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥)
3736, 26eqeq12d 2754 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥 → (suc 𝑛 = 𝑛 ↔ suc suc 𝑥 = suc 𝑥))
3834, 37syl5ibrcom 246 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → (𝑛 = suc 𝑥 → suc 𝑛 = 𝑛))
3938rexlimiv 3208 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ω 𝑛 = suc 𝑥 → suc 𝑛 = 𝑛)
4018, 39sylbi 216 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) → suc 𝑛 = 𝑛)
4140fveq2d 6760 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → (𝑓‘suc 𝑛) = (𝑓𝑛))
4241adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑛) = (𝑓𝑛))
43 simpr2r 1231 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓𝑛) = 𝑦)
4442, 43eqtrd 2778 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑛) = 𝑦)
4532, 44breqtrd 5096 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 𝑛)𝑅𝑦)
46 fvex 6769 . . . . . . . . . 10 (𝑓 𝑛) ∈ V
47 vex 3426 . . . . . . . . . 10 𝑦 ∈ V
4846, 47brelrn 5840 . . . . . . . . 9 ((𝑓 𝑛)𝑅𝑦𝑦 ∈ ran 𝑅)
4945, 48syl 17 . . . . . . . 8 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑦 ∈ ran 𝑅)
5049ex 412 . . . . . . 7 (𝑛 ∈ (ω ∖ 1o) → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅))
5150exlimdv 1937 . . . . . 6 (𝑛 ∈ (ω ∖ 1o) → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅))
5251rexlimiv 3208 . . . . 5 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅)
5352exlimiv 1934 . . . 4 (∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅)
5453abssi 3999 . . 3 {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} ⊆ ran 𝑅
554, 54eqsstri 3951 . 2 ran t++𝑅 ⊆ ran 𝑅
56 rnresv 6093 . . 3 ran (𝑅 ↾ V) = ran 𝑅
57 relres 5909 . . . . . 6 Rel (𝑅 ↾ V)
58 ssttrcl 33701 . . . . . 6 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
5957, 58ax-mp 5 . . . . 5 (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)
60 ttrclresv 33703 . . . . 5 t++(𝑅 ↾ V) = t++𝑅
6159, 60sseqtri 3953 . . . 4 (𝑅 ↾ V) ⊆ t++𝑅
6261rnssi 5838 . . 3 ran (𝑅 ↾ V) ⊆ ran t++𝑅
6356, 62eqsstrri 3952 . 2 ran 𝑅 ⊆ ran t++𝑅
6455, 63eqssi 3933 1 ran t++𝑅 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  c0 4253   cuni 4836   class class class wbr 5070  {copab 5132  ran crn 5581  cres 5582  Rel wrel 5585  Ord word 6250  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  1oc1o 8260  t++cttrcl 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-ttrcl 33694
This theorem is referenced by:  ttrclexg  33709
  Copyright terms: Public domain W3C validator