MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnttrcl Structured version   Visualization version   GIF version

Theorem rnttrcl 9612
Description: The range of a transitive closure is the same as the range of the original class. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
rnttrcl ran t++𝑅 = ran 𝑅

Proof of Theorem rnttrcl
Dummy variables 𝑥 𝑦 𝑓 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 9598 . . . . 5 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
21rneqi 5877 . . . 4 ran t++𝑅 = ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
3 rnopab 5894 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} = {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
42, 3eqtri 2754 . . 3 ran t++𝑅 = {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
5 fveq2 6822 . . . . . . . . . . . 12 (𝑎 = 𝑛 → (𝑓𝑎) = (𝑓 𝑛))
6 suceq 6374 . . . . . . . . . . . . 13 (𝑎 = 𝑛 → suc 𝑎 = suc 𝑛)
76fveq2d 6826 . . . . . . . . . . . 12 (𝑎 = 𝑛 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑛))
85, 7breq12d 5104 . . . . . . . . . . 11 (𝑎 = 𝑛 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓 𝑛)𝑅(𝑓‘suc 𝑛)))
9 simpr3 1197 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
10 df-1o 8385 . . . . . . . . . . . . . . . 16 1o = suc ∅
1110difeq2i 4073 . . . . . . . . . . . . . . 15 (ω ∖ 1o) = (ω ∖ suc ∅)
1211eleq2i 2823 . . . . . . . . . . . . . 14 (𝑛 ∈ (ω ∖ 1o) ↔ 𝑛 ∈ (ω ∖ suc ∅))
13 peano1 7819 . . . . . . . . . . . . . . 15 ∅ ∈ ω
14 eldifsucnn 8579 . . . . . . . . . . . . . . 15 (∅ ∈ ω → (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥))
1513, 14ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ (ω ∖ suc ∅) ↔ ∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥)
16 dif0 4328 . . . . . . . . . . . . . . 15 (ω ∖ ∅) = ω
1716rexeqi 3291 . . . . . . . . . . . . . 14 (∃𝑥 ∈ (ω ∖ ∅)𝑛 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
1812, 15, 173bitri 297 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) ↔ ∃𝑥 ∈ ω 𝑛 = suc 𝑥)
19 nnord 7804 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ω → Ord 𝑥)
20 ordunisuc 7762 . . . . . . . . . . . . . . . . 17 (Ord 𝑥 suc 𝑥 = 𝑥)
2119, 20syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ω → suc 𝑥 = 𝑥)
22 vex 3440 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
2322sucid 6390 . . . . . . . . . . . . . . . 16 𝑥 ∈ suc 𝑥
2421, 23eqeltrdi 2839 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → suc 𝑥 ∈ suc 𝑥)
25 unieq 4870 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥 𝑛 = suc 𝑥)
26 id 22 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥𝑛 = suc 𝑥)
2725, 26eleq12d 2825 . . . . . . . . . . . . . . 15 (𝑛 = suc 𝑥 → ( 𝑛𝑛 suc 𝑥 ∈ suc 𝑥))
2824, 27syl5ibrcom 247 . . . . . . . . . . . . . 14 (𝑥 ∈ ω → (𝑛 = suc 𝑥 𝑛𝑛))
2928rexlimiv 3126 . . . . . . . . . . . . 13 (∃𝑥 ∈ ω 𝑛 = suc 𝑥 𝑛𝑛)
3018, 29sylbi 217 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → 𝑛𝑛)
3130adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑛𝑛)
328, 9, 31rspcdva 3578 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 𝑛)𝑅(𝑓‘suc 𝑛))
33 suceq 6374 . . . . . . . . . . . . . . . . 17 ( suc 𝑥 = 𝑥 → suc suc 𝑥 = suc 𝑥)
3421, 33syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ω → suc suc 𝑥 = suc 𝑥)
35 suceq 6374 . . . . . . . . . . . . . . . . . 18 ( 𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥)
3625, 35syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 = suc 𝑥 → suc 𝑛 = suc suc 𝑥)
3736, 26eqeq12d 2747 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑥 → (suc 𝑛 = 𝑛 ↔ suc suc 𝑥 = suc 𝑥))
3834, 37syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → (𝑛 = suc 𝑥 → suc 𝑛 = 𝑛))
3938rexlimiv 3126 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ω 𝑛 = suc 𝑥 → suc 𝑛 = 𝑛)
4018, 39sylbi 217 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) → suc 𝑛 = 𝑛)
4140fveq2d 6826 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → (𝑓‘suc 𝑛) = (𝑓𝑛))
4241adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑛) = (𝑓𝑛))
43 simpr2r 1234 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓𝑛) = 𝑦)
4442, 43eqtrd 2766 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑛) = 𝑦)
4532, 44breqtrd 5117 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 𝑛)𝑅𝑦)
46 fvex 6835 . . . . . . . . . 10 (𝑓 𝑛) ∈ V
47 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
4846, 47brelrn 5882 . . . . . . . . 9 ((𝑓 𝑛)𝑅𝑦𝑦 ∈ ran 𝑅)
4945, 48syl 17 . . . . . . . 8 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑦 ∈ ran 𝑅)
5049ex 412 . . . . . . 7 (𝑛 ∈ (ω ∖ 1o) → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅))
5150exlimdv 1934 . . . . . 6 (𝑛 ∈ (ω ∖ 1o) → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅))
5251rexlimiv 3126 . . . . 5 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅)
5352exlimiv 1931 . . . 4 (∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑦 ∈ ran 𝑅)
5453abssi 4020 . . 3 {𝑦 ∣ ∃𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} ⊆ ran 𝑅
554, 54eqsstri 3981 . 2 ran t++𝑅 ⊆ ran 𝑅
56 rnresv 6148 . . 3 ran (𝑅 ↾ V) = ran 𝑅
57 relres 5954 . . . . . 6 Rel (𝑅 ↾ V)
58 ssttrcl 9605 . . . . . 6 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
5957, 58ax-mp 5 . . . . 5 (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)
60 ttrclresv 9607 . . . . 5 t++(𝑅 ↾ V) = t++𝑅
6159, 60sseqtri 3983 . . . 4 (𝑅 ↾ V) ⊆ t++𝑅
6261rnssi 5880 . . 3 ran (𝑅 ↾ V) ⊆ ran t++𝑅
6356, 62eqsstrri 3982 . 2 ran 𝑅 ⊆ ran t++𝑅
6455, 63eqssi 3951 1 ran t++𝑅 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  wss 3902  c0 4283   cuni 4859   class class class wbr 5091  {copab 5153  ran crn 5617  cres 5618  Rel wrel 5621  Ord word 6305  suc csuc 6308   Fn wfn 6476  cfv 6481  ωcom 7796  1oc1o 8378  t++cttrcl 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-ttrcl 9598
This theorem is referenced by:  ttrclexg  9613
  Copyright terms: Public domain W3C validator