Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfttrcld | Structured version Visualization version GIF version |
Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
nfttrcld.1 | ⊢ (𝜑 → Ⅎ𝑥𝑅) |
Ref | Expression |
---|---|
nfttrcld | ⊢ (𝜑 → Ⅎ𝑥t++𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ttrcl 33504 | . 2 ⊢ t++𝑅 = {〈𝑦, 𝑧〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | |
2 | nfv 1922 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1922 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
4 | nfv 1922 | . . . 4 ⊢ Ⅎ𝑛𝜑 | |
5 | nfcvd 2905 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(ω ∖ 1o)) | |
6 | nfv 1922 | . . . . 5 ⊢ Ⅎ𝑓𝜑 | |
7 | nfvd 1923 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑓 Fn suc 𝑛) | |
8 | nfvd 1923 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧)) | |
9 | nfv 1922 | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
10 | nfcvd 2905 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝑛) | |
11 | nfcvd 2905 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘𝑎)) | |
12 | nfttrcld.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥𝑅) | |
13 | nfcvd 2905 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘suc 𝑎)) | |
14 | 11, 12, 13 | nfbrd 5096 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
15 | 9, 10, 14 | nfraldw 3141 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
16 | 7, 8, 15 | nf3and 1906 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
17 | 6, 16 | nfexd 2328 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
18 | 4, 5, 17 | nfrexd 3223 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
19 | 2, 3, 18 | nfopabd 5118 | . 2 ⊢ (𝜑 → Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))}) |
20 | 1, 19 | nfcxfrd 2903 | 1 ⊢ (𝜑 → Ⅎ𝑥t++𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∃wex 1787 Ⅎwnfc 2884 ∀wral 3058 ∃wrex 3059 ∖ cdif 3860 ∅c0 4234 class class class wbr 5050 {copab 5112 suc csuc 6212 Fn wfn 6372 ‘cfv 6377 ωcom 7641 1oc1o 8192 t++cttrcl 33503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3063 df-rex 3064 df-rab 3067 df-v 3407 df-dif 3866 df-un 3868 df-nul 4235 df-if 4437 df-sn 4539 df-pr 4541 df-op 4545 df-br 5051 df-opab 5113 df-ttrcl 33504 |
This theorem is referenced by: nfttrcl 33507 |
Copyright terms: Public domain | W3C validator |