Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfttrcld Structured version   Visualization version   GIF version

Theorem nfttrcld 33696
Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.)
Hypothesis
Ref Expression
nfttrcld.1 (𝜑𝑥𝑅)
Assertion
Ref Expression
nfttrcld (𝜑𝑥t++𝑅)

Proof of Theorem nfttrcld
Dummy variables 𝑦 𝑧 𝑛 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 33694 . 2 t++𝑅 = {⟨𝑦, 𝑧⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
2 nfv 1918 . . 3 𝑦𝜑
3 nfv 1918 . . 3 𝑧𝜑
4 nfv 1918 . . . 4 𝑛𝜑
5 nfcvd 2907 . . . 4 (𝜑𝑥(ω ∖ 1o))
6 nfv 1918 . . . . 5 𝑓𝜑
7 nfvd 1919 . . . . . 6 (𝜑 → Ⅎ𝑥 𝑓 Fn suc 𝑛)
8 nfvd 1919 . . . . . 6 (𝜑 → Ⅎ𝑥((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧))
9 nfv 1918 . . . . . . 7 𝑎𝜑
10 nfcvd 2907 . . . . . . 7 (𝜑𝑥𝑛)
11 nfcvd 2907 . . . . . . . 8 (𝜑𝑥(𝑓𝑎))
12 nfttrcld.1 . . . . . . . 8 (𝜑𝑥𝑅)
13 nfcvd 2907 . . . . . . . 8 (𝜑𝑥(𝑓‘suc 𝑎))
1411, 12, 13nfbrd 5116 . . . . . . 7 (𝜑 → Ⅎ𝑥(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
159, 10, 14nfraldw 3146 . . . . . 6 (𝜑 → Ⅎ𝑥𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
167, 8, 15nf3and 1902 . . . . 5 (𝜑 → Ⅎ𝑥(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
176, 16nfexd 2327 . . . 4 (𝜑 → Ⅎ𝑥𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
184, 5, 17nfrexd 3235 . . 3 (𝜑 → Ⅎ𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
192, 3, 18nfopabd 5138 . 2 (𝜑𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))})
201, 19nfcxfrd 2905 1 (𝜑𝑥t++𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wnfc 2886  wral 3063  wrex 3064  cdif 3880  c0 4253   class class class wbr 5070  {copab 5132  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  1oc1o 8260  t++cttrcl 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-ttrcl 33694
This theorem is referenced by:  nfttrcl  33697
  Copyright terms: Public domain W3C validator