![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfttrcld | Structured version Visualization version GIF version |
Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
nfttrcld.1 | ⊢ (𝜑 → Ⅎ𝑥𝑅) |
Ref | Expression |
---|---|
nfttrcld | ⊢ (𝜑 → Ⅎ𝑥t++𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ttrcl 9702 | . 2 ⊢ t++𝑅 = {⟨𝑦, 𝑧⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1917 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
4 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑛𝜑 | |
5 | nfcvd 2904 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(ω ∖ 1o)) | |
6 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑓𝜑 | |
7 | nfvd 1918 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑓 Fn suc 𝑛) | |
8 | nfvd 1918 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧)) | |
9 | nfv 1917 | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
10 | nfcvd 2904 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝑛) | |
11 | nfcvd 2904 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘𝑎)) | |
12 | nfttrcld.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥𝑅) | |
13 | nfcvd 2904 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘suc 𝑎)) | |
14 | 11, 12, 13 | nfbrd 5194 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
15 | 9, 10, 14 | nfraldw 3306 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
16 | 7, 8, 15 | nf3and 1901 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
17 | 6, 16 | nfexd 2322 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
18 | 4, 5, 17 | nfrexdw 3307 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
19 | 2, 3, 18 | nfopabd 5216 | . 2 ⊢ (𝜑 → Ⅎ𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))}) |
20 | 1, 19 | nfcxfrd 2902 | 1 ⊢ (𝜑 → Ⅎ𝑥t++𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∃wex 1781 Ⅎwnfc 2883 ∀wral 3061 ∃wrex 3070 ∖ cdif 3945 ∅c0 4322 class class class wbr 5148 {copab 5210 suc csuc 6366 Fn wfn 6538 ‘cfv 6543 ωcom 7854 1oc1o 8458 t++cttrcl 9701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-ttrcl 9702 |
This theorem is referenced by: nfttrcl 9705 |
Copyright terms: Public domain | W3C validator |