Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfttrcld | Structured version Visualization version GIF version |
Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
nfttrcld.1 | ⊢ (𝜑 → Ⅎ𝑥𝑅) |
Ref | Expression |
---|---|
nfttrcld | ⊢ (𝜑 → Ⅎ𝑥t++𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ttrcl 33694 | . 2 ⊢ t++𝑅 = {〈𝑦, 𝑧〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | |
2 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1918 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
4 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑛𝜑 | |
5 | nfcvd 2907 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(ω ∖ 1o)) | |
6 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑓𝜑 | |
7 | nfvd 1919 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑓 Fn suc 𝑛) | |
8 | nfvd 1919 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧)) | |
9 | nfv 1918 | . . . . . . 7 ⊢ Ⅎ𝑎𝜑 | |
10 | nfcvd 2907 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥𝑛) | |
11 | nfcvd 2907 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘𝑎)) | |
12 | nfttrcld.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥𝑅) | |
13 | nfcvd 2907 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘suc 𝑎)) | |
14 | 11, 12, 13 | nfbrd 5116 | . . . . . . 7 ⊢ (𝜑 → Ⅎ𝑥(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
15 | 9, 10, 14 | nfraldw 3146 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
16 | 7, 8, 15 | nf3and 1902 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
17 | 6, 16 | nfexd 2327 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
18 | 4, 5, 17 | nfrexd 3235 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
19 | 2, 3, 18 | nfopabd 5138 | . 2 ⊢ (𝜑 → Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘𝑛) = 𝑧) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))}) |
20 | 1, 19 | nfcxfrd 2905 | 1 ⊢ (𝜑 → Ⅎ𝑥t++𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 Ⅎwnfc 2886 ∀wral 3063 ∃wrex 3064 ∖ cdif 3880 ∅c0 4253 class class class wbr 5070 {copab 5132 suc csuc 6253 Fn wfn 6413 ‘cfv 6418 ωcom 7687 1oc1o 8260 t++cttrcl 33693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-ttrcl 33694 |
This theorem is referenced by: nfttrcl 33697 |
Copyright terms: Public domain | W3C validator |