MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfttrcld Structured version   Visualization version   GIF version

Theorem nfttrcld 9753
Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.)
Hypothesis
Ref Expression
nfttrcld.1 (𝜑𝑥𝑅)
Assertion
Ref Expression
nfttrcld (𝜑𝑥t++𝑅)

Proof of Theorem nfttrcld
Dummy variables 𝑦 𝑧 𝑛 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 9751 . 2 t++𝑅 = {⟨𝑦, 𝑧⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
2 nfv 1910 . . 3 𝑦𝜑
3 nfv 1910 . . 3 𝑧𝜑
4 nfv 1910 . . . 4 𝑛𝜑
5 nfcvd 2893 . . . 4 (𝜑𝑥(ω ∖ 1o))
6 nfv 1910 . . . . 5 𝑓𝜑
7 nfvd 1911 . . . . . 6 (𝜑 → Ⅎ𝑥 𝑓 Fn suc 𝑛)
8 nfvd 1911 . . . . . 6 (𝜑 → Ⅎ𝑥((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧))
9 nfv 1910 . . . . . . 7 𝑎𝜑
10 nfcvd 2893 . . . . . . 7 (𝜑𝑥𝑛)
11 nfcvd 2893 . . . . . . . 8 (𝜑𝑥(𝑓𝑎))
12 nfttrcld.1 . . . . . . . 8 (𝜑𝑥𝑅)
13 nfcvd 2893 . . . . . . . 8 (𝜑𝑥(𝑓‘suc 𝑎))
1411, 12, 13nfbrd 5199 . . . . . . 7 (𝜑 → Ⅎ𝑥(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
159, 10, 14nfraldw 3297 . . . . . 6 (𝜑 → Ⅎ𝑥𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
167, 8, 15nf3and 1894 . . . . 5 (𝜑 → Ⅎ𝑥(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
176, 16nfexd 2318 . . . 4 (𝜑 → Ⅎ𝑥𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
184, 5, 17nfrexdw 3298 . . 3 (𝜑 → Ⅎ𝑥𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
192, 3, 18nfopabd 5221 . 2 (𝜑𝑥{⟨𝑦, 𝑧⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓𝑛) = 𝑧) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))})
201, 19nfcxfrd 2891 1 (𝜑𝑥t++𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wex 1774  wnfc 2876  wral 3051  wrex 3060  cdif 3944  c0 4325   class class class wbr 5153  {copab 5215  suc csuc 6378   Fn wfn 6549  cfv 6554  ωcom 7876  1oc1o 8489  t++cttrcl 9750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-ttrcl 9751
This theorem is referenced by:  nfttrcl  9754
  Copyright terms: Public domain W3C validator