| Metamath
Proof Explorer Theorem List (p. 98 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | tcmin 9701 | Defining property of the transitive closure function: it is a subset of any transitive class containing 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵)) | ||
| Theorem | tc2 9702* | A variant of the definition of the transitive closure function, using instead the smallest transitive set containing 𝐴 as a member, gives almost the same set, except that 𝐴 itself must be added because it is not usually a member of (TC‘𝐴) (and it is never a member if 𝐴 is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((TC‘𝐴) ∪ {𝐴}) = ∩ {𝑥 ∣ (𝐴 ∈ 𝑥 ∧ Tr 𝑥)} | ||
| Theorem | tcsni 9703 | The transitive closure of a singleton. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (TC‘{𝐴}) = ((TC‘𝐴) ∪ {𝐴}) | ||
| Theorem | tcss 9704 | The transitive closure function inherits the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ⊆ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) | ||
| Theorem | tcel 9705 | The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ 𝐴 → (TC‘𝐵) ⊆ (TC‘𝐴)) | ||
| Theorem | tcidm 9706 | The transitive closure function is idempotent. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ (TC‘(TC‘𝐴)) = (TC‘𝐴) | ||
| Theorem | tc0 9707 | The transitive closure of the empty set. (Contributed by Mario Carneiro, 4-Jun-2015.) |
| ⊢ (TC‘∅) = ∅ | ||
| Theorem | tc00 9708 | The transitive closure is empty iff its argument is. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → ((TC‘𝐴) = ∅ ↔ 𝐴 = ∅)) | ||
| Theorem | frmin 9709* | Every (possibly proper) subclass of a class 𝐴 with a well-founded set-like relation 𝑅 has a minimal element. This is a very strong generalization of tz6.26 6323 and tz7.5 6356. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 27-Nov-2024.) |
| ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | ||
| Theorem | frind 9710* | A subclass of a well-founded class 𝐴 with the property that whenever it contains all predecessors of an element of 𝐴 it also contains that element, is equal to 𝐴. Compare wfi 6325 and tfi 7832, which are special cases of this theorem that do not require the axiom of infinity. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) | ||
| Theorem | frinsg 9711* | Well-Founded Induction Schema. If a property passes from all elements less than 𝑦 of a well-founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. Theorem 5.6(ii) of [Levy] p. 64. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | frins 9712* | Well-Founded Induction Schema. If a property passes from all elements less than 𝑦 of a well-founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
| Theorem | frins2f 9713* | Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | frins2 9714* | Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | frins3 9715* | Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝐵 ∈ 𝐴) → 𝜒) | ||
| Theorem | frr3g 9716* | Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. General version of frr3 9721. (Contributed by Scott Fenton, 10-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺) | ||
| Theorem | frrlem15 9717* | Lemma for general well-founded recursion. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023.) |
| ⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} & ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) | ||
| Theorem | frrlem16 9718* | Lemma for general well-founded recursion. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023.) Revised notion of transitive closure. (Revised by Scott Fenton, 1-Dec-2024.) |
| ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑤 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑤) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) | ||
| Theorem | frr1 9719 | Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 8285, fpr2 8286, and fpr3 8287, which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) | ||
| Theorem | frr2 9720 | Law of general well-founded recursion, part two. Now we establish the value of 𝐹 within 𝐴. (Contributed by Scott Fenton, 11-Sep-2023.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
| Theorem | frr3 9721* | Law of general well-founded recursion, part three. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in frr1 9719 and frr2 9720 is identical to 𝐹. (Contributed by Scott Fenton, 11-Sep-2023.) |
| ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | ||
| Syntax | cr1 9722 | Extend class definition to include the cumulative hierarchy of sets function. |
| class 𝑅1 | ||
| Syntax | crnk 9723 | Extend class definition to include rank function. |
| class rank | ||
| Definition | df-r1 9724 | Define the cumulative hierarchy of sets function, using Takeuti and Zaring's notation (𝑅1). Starting with the empty set, this function builds up layers of sets where the next layer is the power set of the previous layer (and the union of previous layers when the argument is a limit ordinal). Using the Axiom of Regularity, we can show that any set whatsoever belongs to one of the layers of this hierarchy (see tz9.13 9751). Our definition expresses Definition 9.9 of [TakeutiZaring] p. 76 in a closed form, from which we derive the recursive definition as Theorems r10 9728, r1suc 9730, and r1lim 9732. Theorem r1val1 9746 shows a recursive definition that works for all values, and Theorems r1val2 9797 and r1val3 9798 show the value expressed in terms of rank. Other notations for this function are R with the argument as a subscript (Equation 3.1 of [BellMachover] p. 477), V with a subscript (Definition of [Enderton] p. 202), M with a subscript (Definition 15.19 of [Monk1] p. 113), the capital Greek letter psi (Definition of [Mendelson] p. 281), and bold-face R (Definition 2.1 of [Kunen] p. 95). (Contributed by NM, 2-Sep-2003.) |
| ⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | ||
| Definition | df-rank 9725* | Define the rank function. See rankval 9776, rankval2 9778, rankval3 9800, or rankval4 9827 its value. The rank is a kind of "inverse" of the cumulative hierarchy of sets function 𝑅1: given a set, it returns an ordinal number telling us the smallest layer of the hierarchy to which the set belongs. Based on Definition 9.14 of [TakeutiZaring] p. 79. Theorem rankid 9793 illustrates the "inverse" concept. Another nice theorem showing the relationship is rankr1a 9796. (Contributed by NM, 11-Oct-2003.) |
| ⊢ rank = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}) | ||
| Theorem | r1funlim 9726 | The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9727 avoids ax-rep 5237.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | ||
| Theorem | r1fnon 9727 | The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| ⊢ 𝑅1 Fn On | ||
| Theorem | r10 9728 | Value of the cumulative hierarchy of sets function at ∅. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| ⊢ (𝑅1‘∅) = ∅ | ||
| Theorem | r1sucg 9729 | Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | ||
| Theorem | r1suc 9730 | Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| ⊢ (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | ||
| Theorem | r1limg 9731* | Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) | ||
| Theorem | r1lim 9732* | Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) | ||
| Theorem | r1fin 9733 | The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.) |
| ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) | ||
| Theorem | r1sdom 9734 | Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → (𝑅1‘𝐵) ≺ (𝑅1‘𝐴)) | ||
| Theorem | r111 9735 | The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013.) |
| ⊢ 𝑅1:On–1-1→V | ||
| Theorem | r1tr 9736 | The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ Tr (𝑅1‘𝐴) | ||
| Theorem | r1tr2 9737 | The union of a cumulative hierarchy of sets at ordinal 𝐴 is a subset of the hierarchy at 𝐴. JFM CLASSES1 th. 40. (Contributed by FL, 20-Apr-2011.) |
| ⊢ ∪ (𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) | ||
| Theorem | r1ordg 9738 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.) |
| ⊢ (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | ||
| Theorem | r1ord3g 9739 | Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
| ⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
| Theorem | r1ord 9740 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | ||
| Theorem | r1ord2 9741 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 22-Sep-2003.) |
| ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
| Theorem | r1ord3 9742 | Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
| Theorem | r1sssuc 9743 | The value of the cumulative hierarchy of sets function is a subset of its value at the successor. JFM CLASSES1 Th. 39. (Contributed by FL, 20-Apr-2011.) |
| ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) ⊆ (𝑅1‘suc 𝐴)) | ||
| Theorem | r1pwss 9744 | Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵)) | ||
| Theorem | r1sscl 9745 | Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ ((𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ (𝑅1‘𝐵)) | ||
| Theorem | r1val1 9746* | The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) | ||
| Theorem | tz9.12lem1 9747* | Lemma for tz9.12 9750. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ (𝐹 “ 𝐴) ⊆ On | ||
| Theorem | tz9.12lem2 9748* | Lemma for tz9.12 9750. (Contributed by NM, 22-Sep-2003.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On | ||
| Theorem | tz9.12lem3 9749* | Lemma for tz9.12 9750. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝐴 ∈ (𝑅1‘suc suc ∪ (𝐹 “ 𝐴))) | ||
| Theorem | tz9.12 9750* | A set is well-founded if all of its elements are well-founded. Proposition 9.12 of [TakeutiZaring] p. 78. The main proof consists of tz9.12lem1 9747 through tz9.12lem3 9749. (Contributed by NM, 22-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) | ||
| Theorem | tz9.13 9751* | Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) | ||
| Theorem | tz9.13g 9752* | Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13 9751 expresses the class existence requirement as an antecedent. (Contributed by NM, 4-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) | ||
| Theorem | rankwflemb 9753* | Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | ||
| Theorem | rankf 9754 | The domain and codomain of the rank function. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 12-Sep-2013.) |
| ⊢ rank:∪ (𝑅1 “ On)⟶On | ||
| Theorem | rankon 9755 | The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
| ⊢ (rank‘𝐴) ∈ On | ||
| Theorem | r1elwf 9756 | Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | rankvalb 9757* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9776 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | ||
| Theorem | rankr1ai 9758 | One direction of rankr1a 9796. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (rank‘𝐴) ∈ 𝐵) | ||
| Theorem | rankvaln 9759 | Value of the rank function at a non-well-founded set. (The antecedent is always false under Foundation, by unir1 9773, unless 𝐴 is a proper class.) (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| ⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∅) | ||
| Theorem | rankidb 9760 | Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | ||
| Theorem | rankdmr1 9761 | A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (rank‘𝐴) ∈ dom 𝑅1 | ||
| Theorem | rankr1ag 9762 | A version of rankr1a 9796 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | ||
| Theorem | rankr1bg 9763 | A relationship between rank and 𝑅1. See rankr1ag 9762 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) | ||
| Theorem | r1rankidb 9764 | Any set is a subset of the hierarchy of its rank. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | ||
| Theorem | r1elssi 9765 | The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9766 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | ||
| Theorem | r1elss 9766 | The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) | ||
| Theorem | pwwf 9767 | A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | sswf 9768 | A subset of a well-founded set is well-founded. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | snwf 9769 | A singleton is well-founded if its element is. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | unwf 9770 | A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) ↔ (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | prwf 9771 | An unordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → {𝐴, 𝐵} ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | opwf 9772 | An ordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → 〈𝐴, 𝐵〉 ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | unir1 9773 | The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.) |
| ⊢ ∪ (𝑅1 “ On) = V | ||
| Theorem | jech9.3 9774 | Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
| ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V | ||
| Theorem | rankwflem 9775* | Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13g 9752 is useful in proofs of theorems about the rank function. (Contributed by NM, 4-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | ||
| Theorem | rankval 9776* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). (Contributed by NM, 24-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} | ||
| Theorem | rankvalg 9777* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9776 expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝑉 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | ||
| Theorem | rankval2 9778* | Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. (Contributed by NM, 8-Oct-2003.) |
| ⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)}) | ||
| Theorem | uniwf 9779 | A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | rankr1clem 9780 | Lemma for rankr1c 9781. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | ||
| Theorem | rankr1c 9781 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))) | ||
| Theorem | rankidn 9782 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) | ||
| Theorem | rankpwi 9783 | The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 3-Jun-2013.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) | ||
| Theorem | rankelb 9784 | The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) | ||
| Theorem | wfelirr 9785 | A well-founded set is not a member of itself. This proof does not require the axiom of regularity, unlike elirr 9557. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ 𝐴) | ||
| Theorem | rankval3b 9786* | The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥}) | ||
| Theorem | ranksnb 9787 | The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) | ||
| Theorem | rankonidlem 9788 | Lemma for rankonid 9789. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
| ⊢ (𝐴 ∈ dom 𝑅1 → (𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)) | ||
| Theorem | rankonid 9789 | The rank of an ordinal number is itself. Proposition 9.18 of [TakeutiZaring] p. 79 and its converse. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴) | ||
| Theorem | onwf 9790 | The ordinals are all well-founded. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ On ⊆ ∪ (𝑅1 “ On) | ||
| Theorem | onssr1 9791 | Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) | ||
| Theorem | rankr1g 9792 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))) | ||
| Theorem | rankid 9793 | Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) | ||
| Theorem | rankr1 9794 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by NM, 6-Oct-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))) | ||
| Theorem | ssrankr1 9795 | A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets 𝑅1. Proposition 9.15(3) of [TakeutiZaring] p. 79. (Contributed by NM, 8-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) | ||
| Theorem | rankr1a 9796 | A relationship between rank and 𝑅1, clearly equivalent to ssrankr1 9795 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b 9824 for the subset version. (Contributed by Raph Levien, 29-May-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | ||
| Theorem | r1val2 9797* | The value of the cumulative hierarchy of sets function expressed in terms of rank. Definition 15.19 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) |
| ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = {𝑥 ∣ (rank‘𝑥) ∈ 𝐴}) | ||
| Theorem | r1val3 9798* | The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) | ||
| Theorem | rankel 9799 | The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)) | ||
| Theorem | rankval3 9800* | The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |