![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttrclresv | Structured version Visualization version GIF version |
Description: The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
ttrclresv | ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6910 | . . . . . . . 8 ⊢ (𝑓‘𝑎) ∈ V | |
2 | fvex 6910 | . . . . . . . . 9 ⊢ (𝑓‘suc 𝑎) ∈ V | |
3 | 2 | brresi 5994 | . . . . . . . 8 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ((𝑓‘𝑎) ∈ V ∧ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
4 | 1, 3 | mpbiran 708 | . . . . . . 7 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
5 | 4 | ralbii 3090 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
6 | 5 | 3anbi3i 1157 | . . . . 5 ⊢ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
7 | 6 | exbii 1843 | . . . 4 ⊢ (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
8 | 7 | rexbii 3091 | . . 3 ⊢ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
9 | 8 | opabbii 5215 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
10 | df-ttrcl 9732 | . 2 ⊢ t++(𝑅 ↾ V) = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} | |
11 | df-ttrcl 9732 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | |
12 | 9, 10, 11 | 3eqtr4i 2766 | 1 ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 Vcvv 3471 ∖ cdif 3944 ∅c0 4323 class class class wbr 5148 {copab 5210 ↾ cres 5680 suc csuc 6371 Fn wfn 6543 ‘cfv 6548 ωcom 7870 1oc1o 8480 t++cttrcl 9731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-res 5690 df-iota 6500 df-fv 6556 df-ttrcl 9732 |
This theorem is referenced by: ttrclco 9742 cottrcl 9743 dmttrcl 9745 rnttrcl 9746 |
Copyright terms: Public domain | W3C validator |