![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttrclresv | Structured version Visualization version GIF version |
Description: The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
ttrclresv | ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . . . . . . . 8 ⊢ (𝑓‘𝑎) ∈ V | |
2 | fvex 6904 | . . . . . . . . 9 ⊢ (𝑓‘suc 𝑎) ∈ V | |
3 | 2 | brresi 5990 | . . . . . . . 8 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ((𝑓‘𝑎) ∈ V ∧ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
4 | 1, 3 | mpbiran 707 | . . . . . . 7 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
5 | 4 | ralbii 3093 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
6 | 5 | 3anbi3i 1159 | . . . . 5 ⊢ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
7 | 6 | exbii 1850 | . . . 4 ⊢ (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
8 | 7 | rexbii 3094 | . . 3 ⊢ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
9 | 8 | opabbii 5215 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
10 | df-ttrcl 9702 | . 2 ⊢ t++(𝑅 ↾ V) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} | |
11 | df-ttrcl 9702 | . 2 ⊢ t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | |
12 | 9, 10, 11 | 3eqtr4i 2770 | 1 ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ∖ cdif 3945 ∅c0 4322 class class class wbr 5148 {copab 5210 ↾ cres 5678 suc csuc 6366 Fn wfn 6538 ‘cfv 6543 ωcom 7854 1oc1o 8458 t++cttrcl 9701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-res 5688 df-iota 6495 df-fv 6551 df-ttrcl 9702 |
This theorem is referenced by: ttrclco 9712 cottrcl 9713 dmttrcl 9715 rnttrcl 9716 |
Copyright terms: Public domain | W3C validator |