MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclresv Structured version   Visualization version   GIF version

Theorem ttrclresv 9607
Description: The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclresv t++(𝑅 ↾ V) = t++𝑅

Proof of Theorem ttrclresv
Dummy variables 𝑓 𝑛 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . . . . . . 8 (𝑓𝑎) ∈ V
2 fvex 6835 . . . . . . . . 9 (𝑓‘suc 𝑎) ∈ V
32brresi 5936 . . . . . . . 8 ((𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ((𝑓𝑎) ∈ V ∧ (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
41, 3mpbiran 709 . . . . . . 7 ((𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
54ralbii 3078 . . . . . 6 (∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
653anbi3i 1159 . . . . 5 ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
76exbii 1849 . . . 4 (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
87rexbii 3079 . . 3 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
98opabbii 5156 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
10 df-ttrcl 9598 . 2 t++(𝑅 ↾ V) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))}
11 df-ttrcl 9598 . 2 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
129, 10, 113eqtr4i 2764 1 t++(𝑅 ↾ V) = t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  c0 4280   class class class wbr 5089  {copab 5151  cres 5616  suc csuc 6308   Fn wfn 6476  cfv 6481  ωcom 7796  1oc1o 8378  t++cttrcl 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626  df-iota 6437  df-fv 6489  df-ttrcl 9598
This theorem is referenced by:  ttrclco  9608  cottrcl  9609  dmttrcl  9611  rnttrcl  9612
  Copyright terms: Public domain W3C validator