Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttrclresv | Structured version Visualization version GIF version |
Description: The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
ttrclresv | ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6787 | . . . . . . . 8 ⊢ (𝑓‘𝑎) ∈ V | |
2 | fvex 6787 | . . . . . . . . 9 ⊢ (𝑓‘suc 𝑎) ∈ V | |
3 | 2 | brresi 5900 | . . . . . . . 8 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ((𝑓‘𝑎) ∈ V ∧ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
4 | 1, 3 | mpbiran 706 | . . . . . . 7 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
5 | 4 | ralbii 3092 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
6 | 5 | 3anbi3i 1158 | . . . . 5 ⊢ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
7 | 6 | exbii 1850 | . . . 4 ⊢ (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
8 | 7 | rexbii 3181 | . . 3 ⊢ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
9 | 8 | opabbii 5141 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
10 | df-ttrcl 9466 | . 2 ⊢ t++(𝑅 ↾ V) = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} | |
11 | df-ttrcl 9466 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | |
12 | 9, 10, 11 | 3eqtr4i 2776 | 1 ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∖ cdif 3884 ∅c0 4256 class class class wbr 5074 {copab 5136 ↾ cres 5591 suc csuc 6268 Fn wfn 6428 ‘cfv 6433 ωcom 7712 1oc1o 8290 t++cttrcl 9465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 df-ttrcl 9466 |
This theorem is referenced by: ttrclco 9476 cottrcl 9477 dmttrcl 9479 rnttrcl 9480 |
Copyright terms: Public domain | W3C validator |