![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttrclresv | Structured version Visualization version GIF version |
Description: The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
ttrclresv | ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6915 | . . . . . . . 8 ⊢ (𝑓‘𝑎) ∈ V | |
2 | fvex 6915 | . . . . . . . . 9 ⊢ (𝑓‘suc 𝑎) ∈ V | |
3 | 2 | brresi 5998 | . . . . . . . 8 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ((𝑓‘𝑎) ∈ V ∧ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
4 | 1, 3 | mpbiran 707 | . . . . . . 7 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
5 | 4 | ralbii 3090 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
6 | 5 | 3anbi3i 1156 | . . . . 5 ⊢ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
7 | 6 | exbii 1842 | . . . 4 ⊢ (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
8 | 7 | rexbii 3091 | . . 3 ⊢ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
9 | 8 | opabbii 5219 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
10 | df-ttrcl 9741 | . 2 ⊢ t++(𝑅 ↾ V) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} | |
11 | df-ttrcl 9741 | . 2 ⊢ t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | |
12 | 9, 10, 11 | 3eqtr4i 2766 | 1 ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 Vcvv 3473 ∖ cdif 3946 ∅c0 4326 class class class wbr 5152 {copab 5214 ↾ cres 5684 suc csuc 6376 Fn wfn 6548 ‘cfv 6553 ωcom 7878 1oc1o 8488 t++cttrcl 9740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-res 5694 df-iota 6505 df-fv 6561 df-ttrcl 9741 |
This theorem is referenced by: ttrclco 9751 cottrcl 9752 dmttrcl 9754 rnttrcl 9755 |
Copyright terms: Public domain | W3C validator |