![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttrclresv | Structured version Visualization version GIF version |
Description: The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
ttrclresv | ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . . . . . . . 8 ⊢ (𝑓‘𝑎) ∈ V | |
2 | fvex 6933 | . . . . . . . . 9 ⊢ (𝑓‘suc 𝑎) ∈ V | |
3 | 2 | brresi 6018 | . . . . . . . 8 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ((𝑓‘𝑎) ∈ V ∧ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
4 | 1, 3 | mpbiran 708 | . . . . . . 7 ⊢ ((𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
5 | 4 | ralbii 3099 | . . . . . 6 ⊢ (∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
6 | 5 | 3anbi3i 1159 | . . . . 5 ⊢ ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
7 | 6 | exbii 1846 | . . . 4 ⊢ (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
8 | 7 | rexbii 3100 | . . 3 ⊢ (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) |
9 | 8 | opabbii 5233 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
10 | df-ttrcl 9777 | . 2 ⊢ t++(𝑅 ↾ V) = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} | |
11 | df-ttrcl 9777 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} | |
12 | 9, 10, 11 | 3eqtr4i 2778 | 1 ⊢ t++(𝑅 ↾ V) = t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 class class class wbr 5166 {copab 5228 ↾ cres 5702 suc csuc 6397 Fn wfn 6568 ‘cfv 6573 ωcom 7903 1oc1o 8515 t++cttrcl 9776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 df-ttrcl 9777 |
This theorem is referenced by: ttrclco 9787 cottrcl 9788 dmttrcl 9790 rnttrcl 9791 |
Copyright terms: Public domain | W3C validator |