MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclresv Structured version   Visualization version   GIF version

Theorem ttrclresv 9475
Description: The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclresv t++(𝑅 ↾ V) = t++𝑅

Proof of Theorem ttrclresv
Dummy variables 𝑓 𝑛 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . . . . . . . 8 (𝑓𝑎) ∈ V
2 fvex 6787 . . . . . . . . 9 (𝑓‘suc 𝑎) ∈ V
32brresi 5900 . . . . . . . 8 ((𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ((𝑓𝑎) ∈ V ∧ (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
41, 3mpbiran 706 . . . . . . 7 ((𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
54ralbii 3092 . . . . . 6 (∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎) ↔ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
653anbi3i 1158 . . . . 5 ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
76exbii 1850 . . . 4 (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
87rexbii 3181 . . 3 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
98opabbii 5141 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
10 df-ttrcl 9466 . 2 t++(𝑅 ↾ V) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)(𝑅 ↾ V)(𝑓‘suc 𝑎))}
11 df-ttrcl 9466 . 2 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
129, 10, 113eqtr4i 2776 1 t++(𝑅 ↾ V) = t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  c0 4256   class class class wbr 5074  {copab 5136  cres 5591  suc csuc 6268   Fn wfn 6428  cfv 6433  ωcom 7712  1oc1o 8290  t++cttrcl 9465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601  df-iota 6391  df-fv 6441  df-ttrcl 9466
This theorem is referenced by:  ttrclco  9476  cottrcl  9477  dmttrcl  9479  rnttrcl  9480
  Copyright terms: Public domain W3C validator