![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relttrcl | Structured version Visualization version GIF version |
Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
relttrcl | ⊢ Rel t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ttrcl 9744 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} | |
2 | 1 | relopabi 5820 | 1 ⊢ Rel t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∃wex 1774 ∀wral 3051 ∃wrex 3060 ∖ cdif 3943 ∅c0 4322 class class class wbr 5145 Rel wrel 5679 suc csuc 6370 Fn wfn 6541 ‘cfv 6546 ωcom 7868 1oc1o 8481 t++cttrcl 9743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-opab 5208 df-xp 5680 df-rel 5681 df-ttrcl 9744 |
This theorem is referenced by: brttrcl 9749 ttrclss 9756 ttrclexg 9759 |
Copyright terms: Public domain | W3C validator |