| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relttrcl | Structured version Visualization version GIF version | ||
| Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.) |
| Ref | Expression |
|---|---|
| relttrcl | ⊢ Rel t++𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ttrcl 9727 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} | |
| 2 | 1 | relopabi 5806 | 1 ⊢ Rel t++𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∀wral 3052 ∃wrex 3061 ∖ cdif 3928 ∅c0 4313 class class class wbr 5124 Rel wrel 5664 suc csuc 6359 Fn wfn 6531 ‘cfv 6536 ωcom 7866 1oc1o 8478 t++cttrcl 9726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-xp 5665 df-rel 5666 df-ttrcl 9727 |
| This theorem is referenced by: brttrcl 9732 ttrclss 9739 ttrclexg 9742 |
| Copyright terms: Public domain | W3C validator |