MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relttrcl Structured version   Visualization version   GIF version

Theorem relttrcl 9608
Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
relttrcl Rel t++𝑅

Proof of Theorem relttrcl
Dummy variables 𝑓 𝑛 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 9604 . 2 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))}
21relopabi 5765 1 Rel t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wex 1779  wral 3044  wrex 3053  cdif 3900  c0 4284   class class class wbr 5092  Rel wrel 5624  suc csuc 6309   Fn wfn 6477  cfv 6482  ωcom 7799  1oc1o 8381  t++cttrcl 9603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5155  df-xp 5625  df-rel 5626  df-ttrcl 9604
This theorem is referenced by:  brttrcl  9609  ttrclss  9616  ttrclexg  9619
  Copyright terms: Public domain W3C validator