Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relttrcl | Structured version Visualization version GIF version |
Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
relttrcl | ⊢ Rel t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ttrcl 9466 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} | |
2 | 1 | relopabi 5732 | 1 ⊢ Rel t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∀wral 3064 ∃wrex 3065 ∖ cdif 3884 ∅c0 4256 class class class wbr 5074 Rel wrel 5594 suc csuc 6268 Fn wfn 6428 ‘cfv 6433 ωcom 7712 1oc1o 8290 t++cttrcl 9465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 df-ttrcl 9466 |
This theorem is referenced by: brttrcl 9471 ttrclss 9478 ttrclexg 9481 |
Copyright terms: Public domain | W3C validator |