Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relttrcl Structured version   Visualization version   GIF version

Theorem relttrcl 33508
Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
relttrcl Rel t++𝑅

Proof of Theorem relttrcl
Dummy variables 𝑓 𝑛 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 33504 . 2 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))}
21relopabi 5689 1 Rel t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1089   = wceq 1543  wex 1787  wral 3058  wrex 3059  cdif 3860  c0 4234   class class class wbr 5050  Rel wrel 5553  suc csuc 6212   Fn wfn 6372  cfv 6377  ωcom 7641  1oc1o 8192  t++cttrcl 33503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3067  df-v 3407  df-dif 3866  df-un 3868  df-in 3870  df-ss 3880  df-nul 4235  df-if 4437  df-sn 4539  df-pr 4541  df-op 4545  df-opab 5113  df-xp 5554  df-rel 5555  df-ttrcl 33504
This theorem is referenced by:  brttrcl  33509  ttrclss  33516  ttrclexg  33519
  Copyright terms: Public domain W3C validator