Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relttrcl | Structured version Visualization version GIF version |
Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
relttrcl | ⊢ Rel t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ttrcl 33694 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} | |
2 | 1 | relopabi 5721 | 1 ⊢ Rel t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∀wral 3063 ∃wrex 3064 ∖ cdif 3880 ∅c0 4253 class class class wbr 5070 Rel wrel 5585 suc csuc 6253 Fn wfn 6413 ‘cfv 6418 ωcom 7687 1oc1o 8260 t++cttrcl 33693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-rel 5587 df-ttrcl 33694 |
This theorem is referenced by: brttrcl 33699 ttrclss 33706 ttrclexg 33709 |
Copyright terms: Public domain | W3C validator |