MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relttrcl Structured version   Visualization version   GIF version

Theorem relttrcl 9641
Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
relttrcl Rel t++𝑅

Proof of Theorem relttrcl
Dummy variables 𝑓 𝑛 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 9637 . 2 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))}
21relopabi 5776 1 Rel t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wex 1779  wral 3044  wrex 3053  cdif 3908  c0 4292   class class class wbr 5102  Rel wrel 5636  suc csuc 6322   Fn wfn 6494  cfv 6499  ωcom 7822  1oc1o 8404  t++cttrcl 9636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-xp 5637  df-rel 5638  df-ttrcl 9637
This theorem is referenced by:  brttrcl  9642  ttrclss  9649  ttrclexg  9652
  Copyright terms: Public domain W3C validator