MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relttrcl Structured version   Visualization version   GIF version

Theorem relttrcl 9672
Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
relttrcl Rel t++𝑅

Proof of Theorem relttrcl
Dummy variables 𝑓 𝑛 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 9668 . 2 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))}
21relopabi 5788 1 Rel t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wex 1779  wral 3045  wrex 3054  cdif 3914  c0 4299   class class class wbr 5110  Rel wrel 5646  suc csuc 6337   Fn wfn 6509  cfv 6514  ωcom 7845  1oc1o 8430  t++cttrcl 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647  df-rel 5648  df-ttrcl 9668
This theorem is referenced by:  brttrcl  9673  ttrclss  9680  ttrclexg  9683
  Copyright terms: Public domain W3C validator