![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relttrcl | Structured version Visualization version GIF version |
Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.) |
Ref | Expression |
---|---|
relttrcl | ⊢ Rel t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ttrcl 9777 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} | |
2 | 1 | relopabi 5846 | 1 ⊢ Rel t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ∅c0 4352 class class class wbr 5166 Rel wrel 5705 suc csuc 6397 Fn wfn 6568 ‘cfv 6573 ωcom 7903 1oc1o 8515 t++cttrcl 9776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 df-ttrcl 9777 |
This theorem is referenced by: brttrcl 9782 ttrclss 9789 ttrclexg 9792 |
Copyright terms: Public domain | W3C validator |