| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relttrcl | Structured version Visualization version GIF version | ||
| Description: The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.) |
| Ref | Expression |
|---|---|
| relttrcl | ⊢ Rel t++𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ttrcl 9598 | . 2 ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} | |
| 2 | 1 | relopabi 5761 | 1 ⊢ Rel t++𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∀wral 3047 ∃wrex 3056 ∖ cdif 3894 ∅c0 4280 class class class wbr 5089 Rel wrel 5619 suc csuc 6308 Fn wfn 6476 ‘cfv 6481 ωcom 7796 1oc1o 8378 t++cttrcl 9597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 df-ttrcl 9598 |
| This theorem is referenced by: brttrcl 9603 ttrclss 9610 ttrclexg 9613 |
| Copyright terms: Public domain | W3C validator |