Step | Hyp | Ref
| Expression |
1 | | df-ttrcl 9466 |
. . . . 5
⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
2 | 1 | dmeqi 5813 |
. . . 4
⊢ dom
t++𝑅 = dom {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
3 | | dmopab 5824 |
. . . 4
⊢ dom
{〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} = {𝑥 ∣ ∃𝑦∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
4 | 2, 3 | eqtri 2766 |
. . 3
⊢ dom
t++𝑅 = {𝑥 ∣ ∃𝑦∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} |
5 | | simpr2l 1231 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ (𝑓 Fn
suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑥) |
6 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑓‘𝑎) = (𝑓‘∅)) |
7 | | suceq 6331 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∅ → suc 𝑎 = suc ∅) |
8 | | df-1o 8297 |
. . . . . . . . . . . . . 14
⊢
1o = suc ∅ |
9 | 7, 8 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∅ → suc 𝑎 =
1o) |
10 | 9 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o)) |
11 | 6, 10 | breq12d 5087 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ → ((𝑓‘𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o))) |
12 | | simpr3 1195 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ (𝑓 Fn
suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) |
13 | | eldif 3897 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ (ω ∖
1o) ↔ (𝑛
∈ ω ∧ ¬ 𝑛 ∈ 1o)) |
14 | | 0ex 5231 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ V |
15 | | nnord 7720 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ω → Ord 𝑛) |
16 | | ordelsuc 7667 |
. . . . . . . . . . . . . . . 16
⊢ ((∅
∈ V ∧ Ord 𝑛)
→ (∅ ∈ 𝑛
↔ suc ∅ ⊆ 𝑛)) |
17 | 14, 15, 16 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → (∅
∈ 𝑛 ↔ suc ∅
⊆ 𝑛)) |
18 | 8 | sseq1i 3949 |
. . . . . . . . . . . . . . . 16
⊢
(1o ⊆ 𝑛 ↔ suc ∅ ⊆ 𝑛) |
19 | | 1on 8309 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ On |
20 | 19 | onordi 6371 |
. . . . . . . . . . . . . . . . 17
⊢ Ord
1o |
21 | | ordtri1 6299 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
1o ∧ Ord 𝑛)
→ (1o ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o)) |
22 | 20, 15, 21 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ω →
(1o ⊆ 𝑛
↔ ¬ 𝑛 ∈
1o)) |
23 | 18, 22 | bitr3id 285 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ω → (suc
∅ ⊆ 𝑛 ↔
¬ 𝑛 ∈
1o)) |
24 | 17, 23 | bitr2d 279 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ω → (¬
𝑛 ∈ 1o
↔ ∅ ∈ 𝑛)) |
25 | 24 | biimpa 477 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ω ∧ ¬
𝑛 ∈ 1o)
→ ∅ ∈ 𝑛) |
26 | 13, 25 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (ω ∖
1o) → ∅ ∈ 𝑛) |
27 | 26 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ (𝑓 Fn
suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) → ∅ ∈ 𝑛) |
28 | 11, 12, 27 | rspcdva 3562 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ (𝑓 Fn
suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅)𝑅(𝑓‘1o)) |
29 | 5, 28 | eqbrtrrd 5098 |
. . . . . . . . 9
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ (𝑓 Fn
suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑥𝑅(𝑓‘1o)) |
30 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
31 | | fvex 6787 |
. . . . . . . . . 10
⊢ (𝑓‘1o) ∈
V |
32 | 30, 31 | breldm 5817 |
. . . . . . . . 9
⊢ (𝑥𝑅(𝑓‘1o) → 𝑥 ∈ dom 𝑅) |
33 | 29, 32 | syl 17 |
. . . . . . . 8
⊢ ((𝑛 ∈ (ω ∖
1o) ∧ (𝑓 Fn
suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑥 ∈ dom 𝑅) |
34 | 33 | ex 413 |
. . . . . . 7
⊢ (𝑛 ∈ (ω ∖
1o) → ((𝑓
Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅)) |
35 | 34 | exlimdv 1936 |
. . . . . 6
⊢ (𝑛 ∈ (ω ∖
1o) → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅)) |
36 | 35 | rexlimiv 3209 |
. . . . 5
⊢
(∃𝑛 ∈
(ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅) |
37 | 36 | exlimiv 1933 |
. . . 4
⊢
(∃𝑦∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅) |
38 | 37 | abssi 4003 |
. . 3
⊢ {𝑥 ∣ ∃𝑦∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))} ⊆ dom 𝑅 |
39 | 4, 38 | eqsstri 3955 |
. 2
⊢ dom
t++𝑅 ⊆ dom 𝑅 |
40 | | dmresv 6103 |
. . 3
⊢ dom
(𝑅 ↾ V) = dom 𝑅 |
41 | | relres 5920 |
. . . . . 6
⊢ Rel
(𝑅 ↾
V) |
42 | | ssttrcl 9473 |
. . . . . 6
⊢ (Rel
(𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)) |
43 | 41, 42 | ax-mp 5 |
. . . . 5
⊢ (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) |
44 | | ttrclresv 9475 |
. . . . 5
⊢ t++(𝑅 ↾ V) = t++𝑅 |
45 | 43, 44 | sseqtri 3957 |
. . . 4
⊢ (𝑅 ↾ V) ⊆ t++𝑅 |
46 | | dmss 5811 |
. . . 4
⊢ ((𝑅 ↾ V) ⊆ t++𝑅 → dom (𝑅 ↾ V) ⊆ dom t++𝑅) |
47 | 45, 46 | ax-mp 5 |
. . 3
⊢ dom
(𝑅 ↾ V) ⊆ dom
t++𝑅 |
48 | 40, 47 | eqsstrri 3956 |
. 2
⊢ dom 𝑅 ⊆ dom t++𝑅 |
49 | 39, 48 | eqssi 3937 |
1
⊢ dom
t++𝑅 = dom 𝑅 |