MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmttrcl Structured version   Visualization version   GIF version

Theorem dmttrcl 9665
Description: The domain of a transitive closure is the same as the domain of the original class. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
dmttrcl dom t++𝑅 = dom 𝑅

Proof of Theorem dmttrcl
Dummy variables 𝑥 𝑦 𝑓 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 9652 . . . . 5 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
21dmeqi 5864 . . . 4 dom t++𝑅 = dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
3 dmopab 5875 . . . 4 dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} = {𝑥 ∣ ∃𝑦𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
42, 3eqtri 2761 . . 3 dom t++𝑅 = {𝑥 ∣ ∃𝑦𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
5 simpr2l 1233 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑥)
6 fveq2 6846 . . . . . . . . . . . 12 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
7 suceq 6387 . . . . . . . . . . . . . 14 (𝑎 = ∅ → suc 𝑎 = suc ∅)
8 df-1o 8416 . . . . . . . . . . . . . 14 1o = suc ∅
97, 8eqtr4di 2791 . . . . . . . . . . . . 13 (𝑎 = ∅ → suc 𝑎 = 1o)
109fveq2d 6850 . . . . . . . . . . . 12 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
116, 10breq12d 5122 . . . . . . . . . . 11 (𝑎 = ∅ → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
12 simpr3 1197 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
13 eldif 3924 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) ↔ (𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o))
14 0ex 5268 . . . . . . . . . . . . . . . 16 ∅ ∈ V
15 nnord 7814 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ω → Ord 𝑛)
16 ordelsuc 7759 . . . . . . . . . . . . . . . 16 ((∅ ∈ V ∧ Ord 𝑛) → (∅ ∈ 𝑛 ↔ suc ∅ ⊆ 𝑛))
1714, 15, 16sylancr 588 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → (∅ ∈ 𝑛 ↔ suc ∅ ⊆ 𝑛))
188sseq1i 3976 . . . . . . . . . . . . . . . 16 (1o𝑛 ↔ suc ∅ ⊆ 𝑛)
19 1on 8428 . . . . . . . . . . . . . . . . . 18 1o ∈ On
2019onordi 6432 . . . . . . . . . . . . . . . . 17 Ord 1o
21 ordtri1 6354 . . . . . . . . . . . . . . . . 17 ((Ord 1o ∧ Ord 𝑛) → (1o𝑛 ↔ ¬ 𝑛 ∈ 1o))
2220, 15, 21sylancr 588 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ω → (1o𝑛 ↔ ¬ 𝑛 ∈ 1o))
2318, 22bitr3id 285 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → (suc ∅ ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o))
2417, 23bitr2d 280 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (¬ 𝑛 ∈ 1o ↔ ∅ ∈ 𝑛))
2524biimpa 478 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o) → ∅ ∈ 𝑛)
2613, 25sylbi 216 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → ∅ ∈ 𝑛)
2726adantr 482 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∅ ∈ 𝑛)
2811, 12, 27rspcdva 3584 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅)𝑅(𝑓‘1o))
295, 28eqbrtrrd 5133 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑥𝑅(𝑓‘1o))
30 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
31 fvex 6859 . . . . . . . . . 10 (𝑓‘1o) ∈ V
3230, 31breldm 5868 . . . . . . . . 9 (𝑥𝑅(𝑓‘1o) → 𝑥 ∈ dom 𝑅)
3329, 32syl 17 . . . . . . . 8 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑥 ∈ dom 𝑅)
3433ex 414 . . . . . . 7 (𝑛 ∈ (ω ∖ 1o) → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅))
3534exlimdv 1937 . . . . . 6 (𝑛 ∈ (ω ∖ 1o) → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅))
3635rexlimiv 3142 . . . . 5 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅)
3736exlimiv 1934 . . . 4 (∃𝑦𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅)
3837abssi 4031 . . 3 {𝑥 ∣ ∃𝑦𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} ⊆ dom 𝑅
394, 38eqsstri 3982 . 2 dom t++𝑅 ⊆ dom 𝑅
40 dmresv 6156 . . 3 dom (𝑅 ↾ V) = dom 𝑅
41 relres 5970 . . . . . 6 Rel (𝑅 ↾ V)
42 ssttrcl 9659 . . . . . 6 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
4341, 42ax-mp 5 . . . . 5 (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)
44 ttrclresv 9661 . . . . 5 t++(𝑅 ↾ V) = t++𝑅
4543, 44sseqtri 3984 . . . 4 (𝑅 ↾ V) ⊆ t++𝑅
46 dmss 5862 . . . 4 ((𝑅 ↾ V) ⊆ t++𝑅 → dom (𝑅 ↾ V) ⊆ dom t++𝑅)
4745, 46ax-mp 5 . . 3 dom (𝑅 ↾ V) ⊆ dom t++𝑅
4840, 47eqsstrri 3983 . 2 dom 𝑅 ⊆ dom t++𝑅
4939, 48eqssi 3964 1 dom t++𝑅 = dom 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wral 3061  wrex 3070  Vcvv 3447  cdif 3911  wss 3914  c0 4286   class class class wbr 5109  {copab 5171  dom cdm 5637  cres 5639  Rel wrel 5642  Ord word 6320  suc csuc 6323   Fn wfn 6495  cfv 6500  ωcom 7806  1oc1o 8409  t++cttrcl 9651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1o 8416  df-ttrcl 9652
This theorem is referenced by:  ttrclexg  9667  ttrclse  9671
  Copyright terms: Public domain W3C validator