Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmttrcl Structured version   Visualization version   GIF version

Theorem dmttrcl 33707
Description: The domain of a transitive closure is the same as the domain of the original class. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
dmttrcl dom t++𝑅 = dom 𝑅

Proof of Theorem dmttrcl
Dummy variables 𝑥 𝑦 𝑓 𝑛 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ttrcl 33694 . . . . 5 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
21dmeqi 5802 . . . 4 dom t++𝑅 = dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
3 dmopab 5813 . . . 4 dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} = {𝑥 ∣ ∃𝑦𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
42, 3eqtri 2766 . . 3 dom t++𝑅 = {𝑥 ∣ ∃𝑦𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))}
5 simpr2l 1230 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑥)
6 fveq2 6756 . . . . . . . . . . . 12 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
7 suceq 6316 . . . . . . . . . . . . . 14 (𝑎 = ∅ → suc 𝑎 = suc ∅)
8 df-1o 8267 . . . . . . . . . . . . . 14 1o = suc ∅
97, 8eqtr4di 2797 . . . . . . . . . . . . 13 (𝑎 = ∅ → suc 𝑎 = 1o)
109fveq2d 6760 . . . . . . . . . . . 12 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
116, 10breq12d 5083 . . . . . . . . . . 11 (𝑎 = ∅ → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
12 simpr3 1194 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))
13 eldif 3893 . . . . . . . . . . . . 13 (𝑛 ∈ (ω ∖ 1o) ↔ (𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o))
14 0ex 5226 . . . . . . . . . . . . . . . 16 ∅ ∈ V
15 nnord 7695 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ω → Ord 𝑛)
16 ordelsuc 7642 . . . . . . . . . . . . . . . 16 ((∅ ∈ V ∧ Ord 𝑛) → (∅ ∈ 𝑛 ↔ suc ∅ ⊆ 𝑛))
1714, 15, 16sylancr 586 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → (∅ ∈ 𝑛 ↔ suc ∅ ⊆ 𝑛))
188sseq1i 3945 . . . . . . . . . . . . . . . 16 (1o𝑛 ↔ suc ∅ ⊆ 𝑛)
19 1on 8274 . . . . . . . . . . . . . . . . . 18 1o ∈ On
2019onordi 6356 . . . . . . . . . . . . . . . . 17 Ord 1o
21 ordtri1 6284 . . . . . . . . . . . . . . . . 17 ((Ord 1o ∧ Ord 𝑛) → (1o𝑛 ↔ ¬ 𝑛 ∈ 1o))
2220, 15, 21sylancr 586 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ω → (1o𝑛 ↔ ¬ 𝑛 ∈ 1o))
2318, 22bitr3id 284 . . . . . . . . . . . . . . 15 (𝑛 ∈ ω → (suc ∅ ⊆ 𝑛 ↔ ¬ 𝑛 ∈ 1o))
2417, 23bitr2d 279 . . . . . . . . . . . . . 14 (𝑛 ∈ ω → (¬ 𝑛 ∈ 1o ↔ ∅ ∈ 𝑛))
2524biimpa 476 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ ¬ 𝑛 ∈ 1o) → ∅ ∈ 𝑛)
2613, 25sylbi 216 . . . . . . . . . . . 12 (𝑛 ∈ (ω ∖ 1o) → ∅ ∈ 𝑛)
2726adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∅ ∈ 𝑛)
2811, 12, 27rspcdva 3554 . . . . . . . . . 10 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅)𝑅(𝑓‘1o))
295, 28eqbrtrrd 5094 . . . . . . . . 9 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑥𝑅(𝑓‘1o))
30 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
31 fvex 6769 . . . . . . . . . 10 (𝑓‘1o) ∈ V
3230, 31breldm 5806 . . . . . . . . 9 (𝑥𝑅(𝑓‘1o) → 𝑥 ∈ dom 𝑅)
3329, 32syl 17 . . . . . . . 8 ((𝑛 ∈ (ω ∖ 1o) ∧ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑥 ∈ dom 𝑅)
3433ex 412 . . . . . . 7 (𝑛 ∈ (ω ∖ 1o) → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅))
3534exlimdv 1937 . . . . . 6 (𝑛 ∈ (ω ∖ 1o) → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅))
3635rexlimiv 3208 . . . . 5 (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅)
3736exlimiv 1934 . . . 4 (∃𝑦𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥 ∈ dom 𝑅)
3837abssi 3999 . . 3 {𝑥 ∣ ∃𝑦𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑎𝑛 (𝑓𝑎)𝑅(𝑓‘suc 𝑎))} ⊆ dom 𝑅
394, 38eqsstri 3951 . 2 dom t++𝑅 ⊆ dom 𝑅
40 dmresv 6092 . . 3 dom (𝑅 ↾ V) = dom 𝑅
41 relres 5909 . . . . . 6 Rel (𝑅 ↾ V)
42 ssttrcl 33701 . . . . . 6 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
4341, 42ax-mp 5 . . . . 5 (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)
44 ttrclresv 33703 . . . . 5 t++(𝑅 ↾ V) = t++𝑅
4543, 44sseqtri 3953 . . . 4 (𝑅 ↾ V) ⊆ t++𝑅
46 dmss 5800 . . . 4 ((𝑅 ↾ V) ⊆ t++𝑅 → dom (𝑅 ↾ V) ⊆ dom t++𝑅)
4745, 46ax-mp 5 . . 3 dom (𝑅 ↾ V) ⊆ dom t++𝑅
4840, 47eqsstrri 3952 . 2 dom 𝑅 ⊆ dom t++𝑅
4939, 48eqssi 3933 1 dom t++𝑅 = dom 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  c0 4253   class class class wbr 5070  {copab 5132  dom cdm 5580  cres 5582  Rel wrel 5585  Ord word 6250  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  1oc1o 8260  t++cttrcl 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-ttrcl 33694
This theorem is referenced by:  ttrclexg  33709  ttrclse  33713
  Copyright terms: Public domain W3C validator