Step | Hyp | Ref
| Expression |
1 | | breq 5072 |
. . . . . . 7
⊢ (𝑅 = 𝑆 → ((𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓‘𝑚)𝑆(𝑓‘suc 𝑚))) |
2 | 1 | ralbidv 3120 |
. . . . . 6
⊢ (𝑅 = 𝑆 → (∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚) ↔ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑆(𝑓‘suc 𝑚))) |
3 | 2 | 3anbi3d 1440 |
. . . . 5
⊢ (𝑅 = 𝑆 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑆(𝑓‘suc 𝑚)))) |
4 | 3 | exbidv 1925 |
. . . 4
⊢ (𝑅 = 𝑆 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑆(𝑓‘suc 𝑚)))) |
5 | 4 | rexbidv 3225 |
. . 3
⊢ (𝑅 = 𝑆 → (∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑆(𝑓‘suc 𝑚)))) |
6 | 5 | opabbidv 5136 |
. 2
⊢ (𝑅 = 𝑆 → {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑆(𝑓‘suc 𝑚))}) |
7 | | df-ttrcl 33694 |
. 2
⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} |
8 | | df-ttrcl 33694 |
. 2
⊢ t++𝑆 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑆(𝑓‘suc 𝑚))} |
9 | 6, 7, 8 | 3eqtr4g 2804 |
1
⊢ (𝑅 = 𝑆 → t++𝑅 = t++𝑆) |