MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrcleq Structured version   Visualization version   GIF version

Theorem ttrcleq 9467
Description: Equality theorem for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
Assertion
Ref Expression
ttrcleq (𝑅 = 𝑆 → t++𝑅 = t++𝑆)

Proof of Theorem ttrcleq
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5076 . . . . . . 7 (𝑅 = 𝑆 → ((𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ (𝑓𝑚)𝑆(𝑓‘suc 𝑚)))
21ralbidv 3112 . . . . . 6 (𝑅 = 𝑆 → (∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚) ↔ ∀𝑚𝑛 (𝑓𝑚)𝑆(𝑓‘suc 𝑚)))
323anbi3d 1441 . . . . 5 (𝑅 = 𝑆 → ((𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ (𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑆(𝑓‘suc 𝑚))))
43exbidv 1924 . . . 4 (𝑅 = 𝑆 → (∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑆(𝑓‘suc 𝑚))))
54rexbidv 3226 . . 3 (𝑅 = 𝑆 → (∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚)) ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑆(𝑓‘suc 𝑚))))
65opabbidv 5140 . 2 (𝑅 = 𝑆 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑆(𝑓‘suc 𝑚))})
7 df-ttrcl 9466 . 2 t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))}
8 df-ttrcl 9466 . 2 t++𝑆 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑆(𝑓‘suc 𝑚))}
96, 7, 83eqtr4g 2803 1 (𝑅 = 𝑆 → t++𝑅 = t++𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wral 3064  wrex 3065  cdif 3884  c0 4256   class class class wbr 5074  {copab 5136  suc csuc 6268   Fn wfn 6428  cfv 6433  ωcom 7712  1oc1o 8290  t++cttrcl 9465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-br 5075  df-opab 5137  df-ttrcl 9466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator