| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relwlk | Structured version Visualization version GIF version | ||
| Description: The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
| Ref | Expression |
|---|---|
| relwlk | ⊢ Rel (Walks‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wlks 29503 | . 2 ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | |
| 2 | 1 | relmptopab 7619 | 1 ⊢ Rel (Walks‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: if-wif 1062 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 {csn 4585 {cpr 4587 dom cdm 5631 Rel wrel 5636 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 ...cfz 13444 ..^cfzo 13591 ♯chash 14271 Word cword 14454 Vtxcvtx 28899 iEdgciedg 28900 Walkscwlks 29500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-wlks 29503 |
| This theorem is referenced by: wlkop 29531 istrl 29598 isclwlk 29676 usgrgt2cycl 35090 |
| Copyright terms: Public domain | W3C validator |