![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relwlk | Structured version Visualization version GIF version |
Description: The set (WalksβπΊ) of all walks on πΊ is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
Ref | Expression |
---|---|
relwlk | β’ Rel (WalksβπΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlks 28589 | . 2 β’ Walks = (π β V β¦ {β¨π, πβ© β£ (π β Word dom (iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))))}) | |
2 | 1 | relmptopab 7604 | 1 β’ Rel (WalksβπΊ) |
Colors of variables: wff setvar class |
Syntax hints: if-wif 1062 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3061 Vcvv 3444 β wss 3911 {csn 4587 {cpr 4589 dom cdm 5634 Rel wrel 5639 βΆwf 6493 βcfv 6497 (class class class)co 7358 0cc0 11056 1c1 11057 + caddc 11059 ...cfz 13430 ..^cfzo 13573 β―chash 14236 Word cword 14408 Vtxcvtx 27989 iEdgciedg 27990 Walkscwlks 28586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fv 6505 df-wlks 28589 |
This theorem is referenced by: wlkop 28618 istrl 28686 isclwlk 28763 usgrgt2cycl 33781 |
Copyright terms: Public domain | W3C validator |