Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relwlk | Structured version Visualization version GIF version |
Description: The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
Ref | Expression |
---|---|
relwlk | ⊢ Rel (Walks‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wlks 27711 | . 2 ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | |
2 | 1 | relmptopab 7473 | 1 ⊢ Rel (Walks‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: if-wif 1063 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ∀wral 3062 Vcvv 3420 ⊆ wss 3880 {csn 4555 {cpr 4557 dom cdm 5565 Rel wrel 5570 ⟶wf 6393 ‘cfv 6397 (class class class)co 7231 0cc0 10753 1c1 10754 + caddc 10756 ...cfz 13119 ..^cfzo 13262 ♯chash 13920 Word cword 14093 Vtxcvtx 27111 iEdgciedg 27112 Walkscwlks 27708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pr 5336 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-opab 5130 df-mpt 5150 df-id 5469 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-iota 6355 df-fun 6399 df-fv 6405 df-wlks 27711 |
This theorem is referenced by: wlkop 27739 istrl 27808 isclwlk 27884 usgrgt2cycl 32828 |
Copyright terms: Public domain | W3C validator |