| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relwlk | Structured version Visualization version GIF version | ||
| Description: The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
| Ref | Expression |
|---|---|
| relwlk | ⊢ Rel (Walks‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wlks 29545 | . 2 ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | |
| 2 | 1 | relmptopab 7665 | 1 ⊢ Rel (Walks‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: if-wif 1062 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ⊆ wss 3931 {csn 4606 {cpr 4608 dom cdm 5665 Rel wrel 5670 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 ...cfz 13529 ..^cfzo 13676 ♯chash 14351 Word cword 14534 Vtxcvtx 28941 iEdgciedg 28942 Walkscwlks 29542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 df-wlks 29545 |
| This theorem is referenced by: wlkop 29574 istrl 29642 isclwlk 29721 usgrgt2cycl 35094 |
| Copyright terms: Public domain | W3C validator |