| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relwlk | Structured version Visualization version GIF version | ||
| Description: The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.) |
| Ref | Expression |
|---|---|
| relwlk | ⊢ Rel (Walks‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wlks 29579 | . 2 ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) | |
| 2 | 1 | relmptopab 7657 | 1 ⊢ Rel (Walks‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: if-wif 1062 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 {csn 4601 {cpr 4603 dom cdm 5654 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 ...cfz 13524 ..^cfzo 13671 ♯chash 14348 Word cword 14531 Vtxcvtx 28975 iEdgciedg 28976 Walkscwlks 29576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-wlks 29579 |
| This theorem is referenced by: wlkop 29608 istrl 29676 isclwlk 29755 usgrgt2cycl 35152 |
| Copyright terms: Public domain | W3C validator |