MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswlk Structured version   Visualization version   GIF version

Theorem iswlk 27484
Description: Properties of a pair of functions to be a walk. (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
wksfval.v 𝑉 = (Vtx‘𝐺)
wksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
iswlk ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑃,𝑘
Allowed substitution hints:   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)   𝑍(𝑘)

Proof of Theorem iswlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5026 . . 3 (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺))
2 wksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 wksfval.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3wksfval 27483 . . . . 5 (𝐺𝑊 → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
543ad2ant1 1131 . . . 4 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
65eleq2d 2836 . . 3 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ (Walks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))}))
71, 6syl5bb 286 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))}))
8 eleq1 2838 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
98adantr 485 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
10 simpr 489 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
11 fveq2 6651 . . . . . . . 8 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
1211oveq2d 7159 . . . . . . 7 (𝑓 = 𝐹 → (0...(♯‘𝑓)) = (0...(♯‘𝐹)))
1312adantr 485 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0...(♯‘𝑓)) = (0...(♯‘𝐹)))
1410, 13feq12d 6479 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝:(0...(♯‘𝑓))⟶𝑉𝑃:(0...(♯‘𝐹))⟶𝑉))
1511oveq2d 7159 . . . . . . 7 (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
1615adantr 485 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹)))
17 fveq1 6650 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑘) = (𝑃𝑘))
18 fveq1 6650 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
1917, 18eqeq12d 2775 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
2019adantl 486 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
21 fveq1 6650 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
2221fveq2d 6655 . . . . . . . 8 (𝑓 = 𝐹 → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
2317sneqd 4527 . . . . . . . 8 (𝑝 = 𝑃 → {(𝑝𝑘)} = {(𝑃𝑘)})
2422, 23eqeqan12d 2776 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝐼‘(𝑓𝑘)) = {(𝑝𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
2517, 18preq12d 4627 . . . . . . . . 9 (𝑝 = 𝑃 → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2625adantl 486 . . . . . . . 8 ((𝑓 = 𝐹𝑝 = 𝑃) → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2722adantr 485 . . . . . . . 8 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
2826, 27sseq12d 3921 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ({(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2920, 24, 28ifpbi123d 1076 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
3016, 29raleqbidv 3317 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
319, 14, 303anbi123d 1434 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
3231opelopabga 5383 . . 3 ((𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
33323adant1 1128 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
347, 33bitrd 282 1 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  if-wif 1059  w3a 1085   = wceq 1539  wcel 2112  wral 3068  wss 3854  {csn 4515  {cpr 4517  cop 4521   class class class wbr 5025  {copab 5087  dom cdm 5517  wf 6324  cfv 6328  (class class class)co 7143  0cc0 10560  1c1 10561   + caddc 10563  ...cfz 12924  ..^cfzo 13067  chash 13725  Word cword 13898  Vtxcvtx 26873  iEdgciedg 26874  Walkscwlks 27470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-fzo 13068  df-hash 13726  df-word 13899  df-wlks 27473
This theorem is referenced by:  wlkprop  27485  iswlkg  27487  wlkvtxeledg  27497  wlk1walk  27512  redwlk  27546  wlkp1  27555  wlkd  27560  lfgrwlkprop  27561  crctcshwlkn0  27691  upwlkwlk  44719  upgrwlkupwlk  44720
  Copyright terms: Public domain W3C validator