| Step | Hyp | Ref
| Expression |
| 1 | | df-br 5144 |
. . 3
⊢ (𝐹(Walks‘𝐺)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (Walks‘𝐺)) |
| 2 | | wksfval.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
| 3 | | wksfval.i |
. . . . . 6
⊢ 𝐼 = (iEdg‘𝐺) |
| 4 | 2, 3 | wksfval 29627 |
. . . . 5
⊢ (𝐺 ∈ 𝑊 → (Walks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) |
| 5 | 4 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (Walks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) |
| 6 | 5 | eleq2d 2827 |
. . 3
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (〈𝐹, 𝑃〉 ∈ (Walks‘𝐺) ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))})) |
| 7 | 1, 6 | bitrid 283 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))})) |
| 8 | | eleq1 2829 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼)) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼)) |
| 10 | | simpr 484 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) |
| 11 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) |
| 12 | 11 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (0...(♯‘𝑓)) = (0...(♯‘𝐹))) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (0...(♯‘𝑓)) = (0...(♯‘𝐹))) |
| 14 | 10, 13 | feq12d 6724 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝:(0...(♯‘𝑓))⟶𝑉 ↔ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
| 15 | 11 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (0..^(♯‘𝑓)) = (0..^(♯‘𝐹))) |
| 17 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (𝑝‘𝑘) = (𝑃‘𝑘)) |
| 18 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (𝑝‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) |
| 19 | 17, 18 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → ((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)))) |
| 20 | 19 | adantl 481 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)))) |
| 21 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) |
| 22 | 21 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝐼‘(𝑓‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
| 23 | 17 | sneqd 4638 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → {(𝑝‘𝑘)} = {(𝑃‘𝑘)}) |
| 24 | 22, 23 | eqeqan12d 2751 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)} ↔ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)})) |
| 25 | 17, 18 | preq12d 4741 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 26 | 25 | adantl 481 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
| 27 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝐼‘(𝑓‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
| 28 | 26, 27 | sseq12d 4017 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ({(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)) ↔ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 29 | 20, 24, 28 | ifpbi123d 1079 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))) ↔ if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 30 | 16, 29 | raleqbidv 3346 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
| 31 | 9, 14, 30 | 3anbi123d 1438 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 32 | 31 | opelopabga 5538 |
. . 3
⊢ ((𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 33 | 32 | 3adant1 1131 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 34 | 7, 33 | bitrd 279 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |