Step | Hyp | Ref
| Expression |
1 | | df-wlks 27064 |
. 2
⊢ Walks =
(𝑔 ∈ V ↦
{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom
(iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) |
2 | | fveq2 6538 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
3 | | wksfval.i |
. . . . . . . 8
⊢ 𝐼 = (iEdg‘𝐺) |
4 | 2, 3 | syl6eqr 2849 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼) |
5 | 4 | dmeqd 5660 |
. . . . . 6
⊢ (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼) |
6 | | wrdeq 13732 |
. . . . . 6
⊢ (dom
(iEdg‘𝑔) = dom 𝐼 → Word dom
(iEdg‘𝑔) = Word dom
𝐼) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝑔 = 𝐺 → Word dom (iEdg‘𝑔) = Word dom 𝐼) |
8 | 7 | eleq2d 2868 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑓 ∈ Word dom (iEdg‘𝑔) ↔ 𝑓 ∈ Word dom 𝐼)) |
9 | | fveq2 6538 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
10 | | wksfval.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
11 | 9, 10 | syl6eqr 2849 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
12 | 11 | feq3d 6369 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ↔ 𝑝:(0...(♯‘𝑓))⟶𝑉)) |
13 | | biidd 263 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑝‘𝑘) = (𝑝‘(𝑘 + 1)))) |
14 | 4 | fveq1d 6540 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((iEdg‘𝑔)‘(𝑓‘𝑘)) = (𝐼‘(𝑓‘𝑘))) |
15 | 14 | eqeq1d 2797 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)} ↔ (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)})) |
16 | 14 | sseq2d 3920 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ({(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)) ↔ {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))) |
17 | 13, 15, 16 | ifpbi123d 1070 |
. . . . 5
⊢ (𝑔 = 𝐺 → (if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))) ↔ if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))) |
18 | 17 | ralbidv 3164 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))) |
19 | 8, 12, 18 | 3anbi123d 1428 |
. . 3
⊢ (𝑔 = 𝐺 → ((𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))))) |
20 | 19 | opabbidv 5028 |
. 2
⊢ (𝑔 = 𝐺 → {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))} = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) |
21 | | elex 3455 |
. 2
⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) |
22 | | 3anass 1088 |
. . . 4
⊢ ((𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))))) |
23 | 22 | opabbii 5029 |
. . 3
⊢
{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))))} |
24 | 3 | fvexi 6552 |
. . . . . 6
⊢ 𝐼 ∈ V |
25 | 24 | dmex 7472 |
. . . . 5
⊢ dom 𝐼 ∈ V |
26 | | wrdexg 13717 |
. . . . 5
⊢ (dom
𝐼 ∈ V → Word dom
𝐼 ∈
V) |
27 | 25, 26 | mp1i 13 |
. . . 4
⊢ (𝐺 ∈ 𝑊 → Word dom 𝐼 ∈ V) |
28 | | ovex 7048 |
. . . . . 6
⊢
(0...(♯‘𝑓)) ∈ V |
29 | 10 | fvexi 6552 |
. . . . . . 7
⊢ 𝑉 ∈ V |
30 | 29 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑓 ∈ Word dom 𝐼) → 𝑉 ∈ V) |
31 | | mapex 8262 |
. . . . . 6
⊢
(((0...(♯‘𝑓)) ∈ V ∧ 𝑉 ∈ V) → {𝑝 ∣ 𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V) |
32 | 28, 30, 31 | sylancr 587 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ 𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V) |
33 | | simpl 483 |
. . . . . . 7
⊢ ((𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))) → 𝑝:(0...(♯‘𝑓))⟶𝑉) |
34 | 33 | ss2abi 3964 |
. . . . . 6
⊢ {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ⊆ {𝑝 ∣ 𝑝:(0...(♯‘𝑓))⟶𝑉} |
35 | 34 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ⊆ {𝑝 ∣ 𝑝:(0...(♯‘𝑓))⟶𝑉}) |
36 | 32, 35 | ssexd 5119 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ∈ V) |
37 | 27, 36 | opabex3d 7522 |
. . 3
⊢ (𝐺 ∈ 𝑊 → {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))))} ∈ V) |
38 | 23, 37 | syl5eqel 2887 |
. 2
⊢ (𝐺 ∈ 𝑊 → {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ∈ V) |
39 | 1, 20, 21, 38 | fvmptd3 6657 |
1
⊢ (𝐺 ∈ 𝑊 → (Walks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) |