Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksfval Structured version   Visualization version   GIF version

Theorem wksfval 27409
 Description: The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
wksfval.v 𝑉 = (Vtx‘𝐺)
wksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wksfval (𝐺𝑊 → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
Distinct variable groups:   𝑓,𝐺,𝑘,𝑝   𝑓,𝐼,𝑝   𝑉,𝑝   𝑓,𝑊
Allowed substitution hints:   𝐼(𝑘)   𝑉(𝑓,𝑘)   𝑊(𝑘,𝑝)

Proof of Theorem wksfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-wlks 27399 . 2 Walks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))})
2 fveq2 6646 . . . . . . . 8 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
3 wksfval.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
42, 3eqtr4di 2851 . . . . . . 7 (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼)
54dmeqd 5739 . . . . . 6 (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼)
6 wrdeq 13882 . . . . . 6 (dom (iEdg‘𝑔) = dom 𝐼 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
75, 6syl 17 . . . . 5 (𝑔 = 𝐺 → Word dom (iEdg‘𝑔) = Word dom 𝐼)
87eleq2d 2875 . . . 4 (𝑔 = 𝐺 → (𝑓 ∈ Word dom (iEdg‘𝑔) ↔ 𝑓 ∈ Word dom 𝐼))
9 fveq2 6646 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
10 wksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
119, 10eqtr4di 2851 . . . . 5 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
1211feq3d 6475 . . . 4 (𝑔 = 𝐺 → (𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ↔ 𝑝:(0...(♯‘𝑓))⟶𝑉))
134fveq1d 6648 . . . . . . 7 (𝑔 = 𝐺 → ((iEdg‘𝑔)‘(𝑓𝑘)) = (𝐼‘(𝑓𝑘)))
1413eqeq1d 2800 . . . . . 6 (𝑔 = 𝐺 → (((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)} ↔ (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}))
1513sseq2d 3947 . . . . . 6 (𝑔 = 𝐺 → ({(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘)) ↔ {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))
1614, 15ifpbi23d 1077 . . . . 5 (𝑔 = 𝐺 → (if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))) ↔ if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))))
1716ralbidv 3162 . . . 4 (𝑔 = 𝐺 → (∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))))
188, 12, 173anbi123d 1433 . . 3 (𝑔 = 𝐺 → ((𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘)))) ↔ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))))
1918opabbidv 5097 . 2 (𝑔 = 𝐺 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
20 elex 3459 . 2 (𝐺𝑊𝐺 ∈ V)
21 3anass 1092 . . . 4 ((𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))))
2221opabbii 5098 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))))}
233fvexi 6660 . . . . . 6 𝐼 ∈ V
2423dmex 7601 . . . . 5 dom 𝐼 ∈ V
25 wrdexg 13870 . . . . 5 (dom 𝐼 ∈ V → Word dom 𝐼 ∈ V)
2624, 25mp1i 13 . . . 4 (𝐺𝑊 → Word dom 𝐼 ∈ V)
27 ovex 7169 . . . . . 6 (0...(♯‘𝑓)) ∈ V
2810fvexi 6660 . . . . . . 7 𝑉 ∈ V
2928a1i 11 . . . . . 6 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → 𝑉 ∈ V)
30 mapex 8398 . . . . . 6 (((0...(♯‘𝑓)) ∈ V ∧ 𝑉 ∈ V) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
3127, 29, 30sylancr 590 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V)
32 simpl 486 . . . . . . 7 ((𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))) → 𝑝:(0...(♯‘𝑓))⟶𝑉)
3332ss2abi 3994 . . . . . 6 {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉}
3433a1i 11 . . . . 5 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ⊆ {𝑝𝑝:(0...(♯‘𝑓))⟶𝑉})
3531, 34ssexd 5193 . . . 4 ((𝐺𝑊𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ∈ V)
3626, 35opabex3d 7651 . . 3 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))))} ∈ V)
3722, 36eqeltrid 2894 . 2 (𝐺𝑊 → {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ∈ V)
381, 19, 20, 37fvmptd3 6769 1 (𝐺𝑊 → (Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399  if-wif 1058   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {cab 2776  ∀wral 3106  Vcvv 3441   ⊆ wss 3881  {csn 4525  {cpr 4527  {copab 5093  dom cdm 5520  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136  0cc0 10529  1c1 10530   + caddc 10532  ...cfz 12888  ..^cfzo 13031  ♯chash 13689  Word cword 13860  Vtxcvtx 26799  iEdgciedg 26800  Walkscwlks 27396 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-hash 13690  df-word 13861  df-wlks 27399 This theorem is referenced by:  iswlk  27410  wlkprop  27411  wlkv  27412
 Copyright terms: Public domain W3C validator