Step | Hyp | Ref
| Expression |
1 | | df-wlks 28845 |
. 2
β’ Walks =
(π β V β¦
{β¨π, πβ© β£ (π β Word dom
(iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β
(0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))))}) |
2 | | fveq2 6888 |
. . . . . . . 8
β’ (π = πΊ β (iEdgβπ) = (iEdgβπΊ)) |
3 | | wksfval.i |
. . . . . . . 8
β’ πΌ = (iEdgβπΊ) |
4 | 2, 3 | eqtr4di 2790 |
. . . . . . 7
β’ (π = πΊ β (iEdgβπ) = πΌ) |
5 | 4 | dmeqd 5903 |
. . . . . 6
β’ (π = πΊ β dom (iEdgβπ) = dom πΌ) |
6 | | wrdeq 14482 |
. . . . . 6
β’ (dom
(iEdgβπ) = dom πΌ β Word dom
(iEdgβπ) = Word dom
πΌ) |
7 | 5, 6 | syl 17 |
. . . . 5
β’ (π = πΊ β Word dom (iEdgβπ) = Word dom πΌ) |
8 | 7 | eleq2d 2819 |
. . . 4
β’ (π = πΊ β (π β Word dom (iEdgβπ) β π β Word dom πΌ)) |
9 | | fveq2 6888 |
. . . . . 6
β’ (π = πΊ β (Vtxβπ) = (VtxβπΊ)) |
10 | | wksfval.v |
. . . . . 6
β’ π = (VtxβπΊ) |
11 | 9, 10 | eqtr4di 2790 |
. . . . 5
β’ (π = πΊ β (Vtxβπ) = π) |
12 | 11 | feq3d 6701 |
. . . 4
β’ (π = πΊ β (π:(0...(β―βπ))βΆ(Vtxβπ) β π:(0...(β―βπ))βΆπ)) |
13 | 4 | fveq1d 6890 |
. . . . . . 7
β’ (π = πΊ β ((iEdgβπ)β(πβπ)) = (πΌβ(πβπ))) |
14 | 13 | eqeq1d 2734 |
. . . . . 6
β’ (π = πΊ β (((iEdgβπ)β(πβπ)) = {(πβπ)} β (πΌβ(πβπ)) = {(πβπ)})) |
15 | 13 | sseq2d 4013 |
. . . . . 6
β’ (π = πΊ β ({(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ)) β {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ)))) |
16 | 14, 15 | ifpbi23d 1080 |
. . . . 5
β’ (π = πΊ β (if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))) β if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))) |
17 | 16 | ralbidv 3177 |
. . . 4
β’ (π = πΊ β (βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))) β βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))) |
18 | 8, 12, 17 | 3anbi123d 1436 |
. . 3
β’ (π = πΊ β ((π β Word dom (iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ)))) β (π β Word dom πΌ β§ π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ)))))) |
19 | 18 | opabbidv 5213 |
. 2
β’ (π = πΊ β {β¨π, πβ© β£ (π β Word dom (iEdgβπ) β§ π:(0...(β―βπ))βΆ(Vtxβπ) β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), ((iEdgβπ)β(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β ((iEdgβπ)β(πβπ))))} = {β¨π, πβ© β£ (π β Word dom πΌ β§ π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))}) |
20 | | elex 3492 |
. 2
β’ (πΊ β π β πΊ β V) |
21 | | 3anass 1095 |
. . . 4
β’ ((π β Word dom πΌ β§ π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ)))) β (π β Word dom πΌ β§ (π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ)))))) |
22 | 21 | opabbii 5214 |
. . 3
β’
{β¨π, πβ© β£ (π β Word dom πΌ β§ π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))} = {β¨π, πβ© β£ (π β Word dom πΌ β§ (π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ)))))} |
23 | 3 | fvexi 6902 |
. . . . . 6
β’ πΌ β V |
24 | 23 | dmex 7898 |
. . . . 5
β’ dom πΌ β V |
25 | | wrdexg 14470 |
. . . . 5
β’ (dom
πΌ β V β Word dom
πΌ β
V) |
26 | 24, 25 | mp1i 13 |
. . . 4
β’ (πΊ β π β Word dom πΌ β V) |
27 | | ovex 7438 |
. . . . . 6
β’
(0...(β―βπ)) β V |
28 | 10 | fvexi 6902 |
. . . . . . 7
β’ π β V |
29 | 28 | a1i 11 |
. . . . . 6
β’ ((πΊ β π β§ π β Word dom πΌ) β π β V) |
30 | | mapex 8822 |
. . . . . 6
β’
(((0...(β―βπ)) β V β§ π β V) β {π β£ π:(0...(β―βπ))βΆπ} β V) |
31 | 27, 29, 30 | sylancr 587 |
. . . . 5
β’ ((πΊ β π β§ π β Word dom πΌ) β {π β£ π:(0...(β―βπ))βΆπ} β V) |
32 | | simpl 483 |
. . . . . . 7
β’ ((π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ)))) β π:(0...(β―βπ))βΆπ) |
33 | 32 | ss2abi 4062 |
. . . . . 6
β’ {π β£ (π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))} β {π β£ π:(0...(β―βπ))βΆπ} |
34 | 33 | a1i 11 |
. . . . 5
β’ ((πΊ β π β§ π β Word dom πΌ) β {π β£ (π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))} β {π β£ π:(0...(β―βπ))βΆπ}) |
35 | 31, 34 | ssexd 5323 |
. . . 4
β’ ((πΊ β π β§ π β Word dom πΌ) β {π β£ (π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))} β V) |
36 | 26, 35 | opabex3d 7948 |
. . 3
β’ (πΊ β π β {β¨π, πβ© β£ (π β Word dom πΌ β§ (π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ)))))} β V) |
37 | 22, 36 | eqeltrid 2837 |
. 2
β’ (πΊ β π β {β¨π, πβ© β£ (π β Word dom πΌ β§ π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))} β V) |
38 | 1, 19, 20, 37 | fvmptd3 7018 |
1
β’ (πΊ β π β (WalksβπΊ) = {β¨π, πβ© β£ (π β Word dom πΌ β§ π:(0...(β―βπ))βΆπ β§ βπ β (0..^(β―βπ))if-((πβπ) = (πβ(π + 1)), (πΌβ(πβπ)) = {(πβπ)}, {(πβπ), (πβ(π + 1))} β (πΌβ(πβπ))))}) |