Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk1walk Structured version   Visualization version   GIF version

Theorem wlk1walk 27520
 Description: A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.)
Hypothesis
Ref Expression
wlk1walk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wlk1walk (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hint:   𝐼(𝑘)

Proof of Theorem wlk1walk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkv 27494 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2759 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2759 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 27492 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))))))
5 fvex 6672 . . . . . . 7 (𝐼‘(𝐹‘(𝑘 − 1))) ∈ V
65inex1 5188 . . . . . 6 ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V
7 fzo0ss1 13109 . . . . . . . . . . . 12 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
87sseli 3889 . . . . . . . . . . 11 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (0..^(♯‘𝐹)))
9 wkslem1 27489 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
109rspcv 3537 . . . . . . . . . . 11 (𝑘 ∈ (0..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
118, 10syl 17 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1211imp 411 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))
13 elfzofz 13095 . . . . . . . . . . 11 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (1...(♯‘𝐹)))
14 fz1fzo0m1 13127 . . . . . . . . . . 11 (𝑘 ∈ (1...(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
15 wkslem1 27489 . . . . . . . . . . . 12 (𝑖 = (𝑘 − 1) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1615rspcv 3537 . . . . . . . . . . 11 ((𝑘 − 1) ∈ (0..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1713, 14, 163syl 18 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1817imp 411 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
19 df-ifp 1060 . . . . . . . . . . . 12 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
20 elfzoelz 13080 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ ℤ)
21 zcn 12018 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
22 eqidd 2760 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 − 1) = (𝑘 − 1))
23 npcan1 11096 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → ((𝑘 − 1) + 1) = 𝑘)
24 wkslem2 27490 . . . . . . . . . . . . . . . 16 (((𝑘 − 1) = (𝑘 − 1) ∧ ((𝑘 − 1) + 1) = 𝑘) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2522, 23, 24syl2anc 588 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℂ → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2620, 21, 253syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
27 df-ifp 1060 . . . . . . . . . . . . . . 15 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
28 sneq 4533 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → {(𝑃‘(𝑘 − 1))} = {(𝑃𝑘)})
2928eqeq2d 2770 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} ↔ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)}))
30 fvex 6672 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃𝑘) ∈ V
3130snid 4559 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃𝑘) ∈ {(𝑃𝑘)}
32 wlk1walk.i . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐼 = (iEdg‘𝐺)
3332fveq1i 6660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼‘(𝐹‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))
3433eleq2i 2844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
35 eleq2 2841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3634, 35syl5bb 286 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3731, 36mpbiri 261 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
38 eleq2 2841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3931, 38mpbiri 261 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
4032fveq1i 6660 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘))
4139, 40eleqtrrdi 2864 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
4237, 41anim12i 616 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
4342ex 417 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4429, 43syl6bi 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
4544imp 411 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4645com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4746adantl 486 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
48 fvex 6672 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃‘(𝑘 + 1)) ∈ V
4930, 48prss 4711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))
5032eqcomi 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (iEdg‘𝐺) = 𝐼
5150fveq1i 6660 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((iEdg‘𝐺)‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘))
5251eleq2i 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5352biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5453adantr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5549, 54sylbir 238 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5637, 55anim12i 616 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
5756ex 417 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
5829, 57syl6bi 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
5958imp 411 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6059com12 32 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6160adantl 486 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6247, 61jaoi 855 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6362com12 32 . . . . . . . . . . . . . . . 16 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
64 fvex 6672 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃‘(𝑘 − 1)) ∈ V
6564, 30prss 4711 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6650fveq1i 6660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝑘 − 1)))
6766eleq2i 2844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6867biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6940eleq2i 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
7069, 38syl5bb 286 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
7131, 70mpbiri 261 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
7268, 71anim12i 616 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
7372ex 417 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7473adantl 486 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7565, 74sylbir 238 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7675adantl 486 . . . . . . . . . . . . . . . . . . . 20 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7776com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7877adantl 486 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7967, 52anbi12i 630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8079biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8180ex 417 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8281adantl 486 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8365, 82sylbir 238 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8483adantl 486 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8584com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8685adantr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8749, 86sylbir 238 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8887adantl 486 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8978, 88jaoi 855 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9089com12 32 . . . . . . . . . . . . . . . 16 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9163, 90jaoi 855 . . . . . . . . . . . . . . 15 ((((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9227, 91sylbi 220 . . . . . . . . . . . . . 14 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9326, 92syl6bi 256 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9493com3r 87 . . . . . . . . . . . 12 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9519, 94sylbi 220 . . . . . . . . . . 11 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9695com12 32 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9796adantr 485 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9812, 18, 97mp2d 49 . . . . . . . 8 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
9998ancoms 463 . . . . . . 7 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
100 inelcm 4362 . . . . . . 7 (((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
10199, 100syl 17 . . . . . 6 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
102 hashge1 13793 . . . . . 6 ((((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V ∧ ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅) → 1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1036, 101, 102sylancr 591 . . . . 5 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → 1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
104103ralrimiva 3114 . . . 4 (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1051043ad2ant3 1133 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1064, 105syl6bi 256 . 2 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
1071, 106mpcom 38 1 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   ∨ wo 845  if-wif 1059   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  Vcvv 3410   ∩ cin 3858   ⊆ wss 3859  ∅c0 4226  {csn 4523  {cpr 4525   class class class wbr 5033  dom cdm 5525  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151  ℂcc 10566  0cc0 10568  1c1 10569   + caddc 10571   ≤ cle 10707   − cmin 10901  ℤcz 12013  ...cfz 12932  ..^cfzo 13075  ♯chash 13733  Word cword 13906  Vtxcvtx 26881  iEdgciedg 26882  Walkscwlks 27478 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-n0 11928  df-z 12014  df-uz 12276  df-fz 12933  df-fzo 13076  df-hash 13734  df-word 13907  df-wlks 27481 This theorem is referenced by:  wlk1ewlk  27521
 Copyright terms: Public domain W3C validator