MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk1walk Structured version   Visualization version   GIF version

Theorem wlk1walk 28006
Description: A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.)
Hypothesis
Ref Expression
wlk1walk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
wlk1walk (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hint:   𝐼(𝑘)

Proof of Theorem wlk1walk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkv 27979 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 27977 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))))))
5 fvex 6787 . . . . . . 7 (𝐼‘(𝐹‘(𝑘 − 1))) ∈ V
65inex1 5241 . . . . . 6 ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V
7 fzo0ss1 13417 . . . . . . . . . . . 12 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
87sseli 3917 . . . . . . . . . . 11 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (0..^(♯‘𝐹)))
9 wkslem1 27974 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
109rspcv 3557 . . . . . . . . . . 11 (𝑘 ∈ (0..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
118, 10syl 17 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1211imp 407 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))
13 elfzofz 13403 . . . . . . . . . . 11 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ (1...(♯‘𝐹)))
14 fz1fzo0m1 13435 . . . . . . . . . . 11 (𝑘 ∈ (1...(♯‘𝐹)) → (𝑘 − 1) ∈ (0..^(♯‘𝐹)))
15 wkslem1 27974 . . . . . . . . . . . 12 (𝑖 = (𝑘 − 1) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1615rspcv 3557 . . . . . . . . . . 11 ((𝑘 − 1) ∈ (0..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1713, 14, 163syl 18 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1817imp 407 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
19 df-ifp 1061 . . . . . . . . . . . 12 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
20 elfzoelz 13387 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(♯‘𝐹)) → 𝑘 ∈ ℤ)
21 zcn 12324 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
22 eqidd 2739 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 − 1) = (𝑘 − 1))
23 npcan1 11400 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → ((𝑘 − 1) + 1) = 𝑘)
24 wkslem2 27975 . . . . . . . . . . . . . . . 16 (((𝑘 − 1) = (𝑘 − 1) ∧ ((𝑘 − 1) + 1) = 𝑘) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2522, 23, 24syl2anc 584 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℂ → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2620, 21, 253syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
27 df-ifp 1061 . . . . . . . . . . . . . . 15 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
28 sneq 4571 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → {(𝑃‘(𝑘 − 1))} = {(𝑃𝑘)})
2928eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} ↔ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)}))
30 fvex 6787 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃𝑘) ∈ V
3130snid 4597 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃𝑘) ∈ {(𝑃𝑘)}
32 wlk1walk.i . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐼 = (iEdg‘𝐺)
3332fveq1i 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼‘(𝐹‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))
3433eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
35 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3634, 35bitrid 282 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3731, 36mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
38 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3931, 38mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
4032fveq1i 6775 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘))
4139, 40eleqtrrdi 2850 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
4237, 41anim12i 613 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
4342ex 413 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4429, 43syl6bi 252 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
4544imp 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4645com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4746adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
48 fvex 6787 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃‘(𝑘 + 1)) ∈ V
4930, 48prss 4753 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))
5032eqcomi 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (iEdg‘𝐺) = 𝐼
5150fveq1i 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((iEdg‘𝐺)‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘))
5251eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5352biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5453adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5549, 54sylbir 234 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5637, 55anim12i 613 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
5756ex 413 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
5829, 57syl6bi 252 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
5958imp 407 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6059com12 32 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6160adantl 482 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6247, 61jaoi 854 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6362com12 32 . . . . . . . . . . . . . . . 16 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
64 fvex 6787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃‘(𝑘 − 1)) ∈ V
6564, 30prss 4753 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6650fveq1i 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝑘 − 1)))
6766eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6867biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6940eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
7069, 38bitrid 282 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
7131, 70mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
7268, 71anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
7372ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7473adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7565, 74sylbir 234 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7675adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7776com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7877adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7967, 52anbi12i 627 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8079biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8180ex 413 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8281adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8365, 82sylbir 234 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8483adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8584com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8685adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8749, 86sylbir 234 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8887adantl 482 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8978, 88jaoi 854 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9089com12 32 . . . . . . . . . . . . . . . 16 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9163, 90jaoi 854 . . . . . . . . . . . . . . 15 ((((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9227, 91sylbi 216 . . . . . . . . . . . . . 14 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9326, 92syl6bi 252 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9493com3r 87 . . . . . . . . . . . 12 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9519, 94sylbi 216 . . . . . . . . . . 11 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9695com12 32 . . . . . . . . . 10 (𝑘 ∈ (1..^(♯‘𝐹)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9796adantr 481 . . . . . . . . 9 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9812, 18, 97mp2d 49 . . . . . . . 8 ((𝑘 ∈ (1..^(♯‘𝐹)) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
9998ancoms 459 . . . . . . 7 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
100 inelcm 4398 . . . . . . 7 (((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
10199, 100syl 17 . . . . . 6 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
102 hashge1 14104 . . . . . 6 ((((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V ∧ ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅) → 1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1036, 101, 102sylancr 587 . . . . 5 ((∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(♯‘𝐹))) → 1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
104103ralrimiva 3103 . . . 4 (∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1051043ad2ant3 1134 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1064, 105syl6bi 252 . 2 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
1071, 106mpcom 38 1 (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  if-wif 1060  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cin 3886  wss 3887  c0 4256  {csn 4561  {cpr 4563   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  Vtxcvtx 27366  iEdgciedg 27367  Walkscwlks 27963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-wlks 27966
This theorem is referenced by:  wlk1ewlk  28007
  Copyright terms: Public domain W3C validator