![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxp2 | Structured version Visualization version GIF version |
Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
brtxp2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brtxp2 | ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txpss3v 34850 | . . . . . . 7 ⊢ (𝑅 ⊗ 𝑆) ⊆ (V × (V × V)) | |
2 | 1 | brel 5742 | . . . . . 6 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
3 | 2 | simprd 497 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
4 | elvv 5751 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩) |
6 | 5 | pm4.71ri 562 | . . 3 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
7 | 19.41vv 1955 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) | |
8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
9 | breq2 5153 | . . . 4 ⊢ (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ 𝐴(𝑅 ⊗ 𝑆)⟨𝑥, 𝑦⟩)) | |
10 | 9 | pm5.32i 576 | . . 3 ⊢ ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)⟨𝑥, 𝑦⟩)) |
11 | 10 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)⟨𝑥, 𝑦⟩)) |
12 | brtxp2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
13 | vex 3479 | . . . . . 6 ⊢ 𝑥 ∈ V | |
14 | vex 3479 | . . . . . 6 ⊢ 𝑦 ∈ V | |
15 | 12, 13, 14 | brtxp 34852 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
16 | 15 | anbi2i 624 | . . . 4 ⊢ ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
17 | 3anass 1096 | . . . 4 ⊢ ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
18 | 16, 17 | bitr4i 278 | . . 3 ⊢ ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
19 | 18 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅 ⊗ 𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
20 | 8, 11, 19 | 3bitri 297 | 1 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 class class class wbr 5149 × cxp 5675 ⊗ ctxp 34802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fo 6550 df-fv 6552 df-1st 7975 df-2nd 7976 df-txp 34826 |
This theorem is referenced by: brsuccf 34913 brrestrict 34921 |
Copyright terms: Public domain | W3C validator |