Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxp2 Structured version   Visualization version   GIF version

Theorem brtxp2 33344
Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.)
Hypothesis
Ref Expression
brtxp2.1 𝐴 ∈ V
Assertion
Ref Expression
brtxp2 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem brtxp2
StepHypRef Expression
1 txpss3v 33341 . . . . . . 7 (𝑅𝑆) ⊆ (V × (V × V))
21brel 5619 . . . . . 6 (𝐴(𝑅𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V)))
32simprd 498 . . . . 5 (𝐴(𝑅𝑆)𝐵𝐵 ∈ (V × V))
4 elvv 5628 . . . . 5 (𝐵 ∈ (V × V) ↔ ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
53, 4sylib 220 . . . 4 (𝐴(𝑅𝑆)𝐵 → ∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩)
65pm4.71ri 563 . . 3 (𝐴(𝑅𝑆)𝐵 ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
7 19.41vv 1951 . . 3 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (∃𝑥𝑦 𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
86, 7bitr4i 280 . 2 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵))
9 breq2 5072 . . . 4 (𝐵 = ⟨𝑥, 𝑦⟩ → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
109pm5.32i 577 . . 3 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
11102exbii 1849 . 2 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)𝐵) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩))
12 brtxp2.1 . . . . . 6 𝐴 ∈ V
13 vex 3499 . . . . . 6 𝑥 ∈ V
14 vex 3499 . . . . . 6 𝑦 ∈ V
1512, 13, 14brtxp 33343 . . . . 5 (𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩ ↔ (𝐴𝑅𝑥𝐴𝑆𝑦))
1615anbi2i 624 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦)))
17 3anass 1091 . . . 4 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ (𝐴𝑅𝑥𝐴𝑆𝑦)))
1816, 17bitr4i 280 . . 3 ((𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ (𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
19182exbii 1849 . 2 (∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴(𝑅𝑆)⟨𝑥, 𝑦⟩) ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
208, 11, 193bitri 299 1 (𝐴(𝑅𝑆)𝐵 ↔ ∃𝑥𝑦(𝐵 = ⟨𝑥, 𝑦⟩ ∧ 𝐴𝑅𝑥𝐴𝑆𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  Vcvv 3496  cop 4575   class class class wbr 5068   × cxp 5555  ctxp 33293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-2nd 7692  df-txp 33317
This theorem is referenced by:  brsuccf  33404  brrestrict  33412
  Copyright terms: Public domain W3C validator