![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxp2 | Structured version Visualization version GIF version |
Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
brtxp2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brtxp2 | ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txpss3v 35702 | . . . . . . 7 ⊢ (𝑅 ⊗ 𝑆) ⊆ (V × (V × V)) | |
2 | 1 | brel 5747 | . . . . . 6 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
3 | 2 | simprd 494 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
4 | elvv 5756 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) |
6 | 5 | pm4.71ri 559 | . . 3 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
7 | 19.41vv 1947 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
9 | breq2 5157 | . . . 4 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) | |
10 | 9 | pm5.32i 573 | . . 3 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) |
11 | 10 | 2exbii 1844 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) |
12 | brtxp2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
13 | vex 3466 | . . . . . 6 ⊢ 𝑥 ∈ V | |
14 | vex 3466 | . . . . . 6 ⊢ 𝑦 ∈ V | |
15 | 12, 13, 14 | brtxp 35704 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉 ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
16 | 15 | anbi2i 621 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
17 | 3anass 1092 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
18 | 16, 17 | bitr4i 277 | . . 3 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
19 | 18 | 2exbii 1844 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
20 | 8, 11, 19 | 3bitri 296 | 1 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3462 〈cop 4639 class class class wbr 5153 × cxp 5680 ⊗ ctxp 35654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fo 6560 df-fv 6562 df-1st 8003 df-2nd 8004 df-txp 35678 |
This theorem is referenced by: brsuccf 35765 brrestrict 35773 |
Copyright terms: Public domain | W3C validator |