| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxp2 | Structured version Visualization version GIF version | ||
| Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.) |
| Ref | Expression |
|---|---|
| brtxp2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| brtxp2 | ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txpss3v 35920 | . . . . . . 7 ⊢ (𝑅 ⊗ 𝑆) ⊆ (V × (V × V)) | |
| 2 | 1 | brel 5679 | . . . . . 6 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
| 3 | 2 | simprd 495 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
| 4 | elvv 5689 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) |
| 6 | 5 | pm4.71ri 560 | . . 3 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
| 7 | 19.41vv 1951 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
| 9 | breq2 5093 | . . . 4 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) | |
| 10 | 9 | pm5.32i 574 | . . 3 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) |
| 11 | 10 | 2exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) |
| 12 | brtxp2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 13 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 14 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 15 | 12, 13, 14 | brtxp 35922 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉 ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| 16 | 15 | anbi2i 623 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| 17 | 3anass 1094 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
| 18 | 16, 17 | bitr4i 278 | . . 3 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| 19 | 18 | 2exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| 20 | 8, 11, 19 | 3bitri 297 | 1 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 × cxp 5612 ⊗ ctxp 35872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35896 |
| This theorem is referenced by: brsuccf 35983 brrestrict 35991 |
| Copyright terms: Public domain | W3C validator |