| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxp2 | Structured version Visualization version GIF version | ||
| Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.) |
| Ref | Expression |
|---|---|
| brtxp2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| brtxp2 | ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txpss3v 35839 | . . . . . . 7 ⊢ (𝑅 ⊗ 𝑆) ⊆ (V × (V × V)) | |
| 2 | 1 | brel 5696 | . . . . . 6 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
| 3 | 2 | simprd 495 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
| 4 | elvv 5706 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
| 5 | 3, 4 | sylib 218 | . . . 4 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) |
| 6 | 5 | pm4.71ri 560 | . . 3 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
| 7 | 19.41vv 1950 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
| 9 | breq2 5106 | . . . 4 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) | |
| 10 | 9 | pm5.32i 574 | . . 3 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) |
| 11 | 10 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) |
| 12 | brtxp2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 13 | vex 3448 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 14 | vex 3448 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 15 | 12, 13, 14 | brtxp 35841 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉 ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| 16 | 15 | anbi2i 623 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
| 17 | 3anass 1094 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
| 18 | 16, 17 | bitr4i 278 | . . 3 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| 19 | 18 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| 20 | 8, 11, 19 | 3bitri 297 | 1 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 〈cop 4591 class class class wbr 5102 × cxp 5629 ⊗ ctxp 35791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-1st 7947 df-2nd 7948 df-txp 35815 |
| This theorem is referenced by: brsuccf 35902 brrestrict 35910 |
| Copyright terms: Public domain | W3C validator |