Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxp2 | Structured version Visualization version GIF version |
Description: The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
brtxp2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
brtxp2 | ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | txpss3v 34107 | . . . . . . 7 ⊢ (𝑅 ⊗ 𝑆) ⊆ (V × (V × V)) | |
2 | 1 | brel 5643 | . . . . . 6 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ (V × V))) |
3 | 2 | simprd 495 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → 𝐵 ∈ (V × V)) |
4 | elvv 5652 | . . . . 5 ⊢ (𝐵 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) | |
5 | 3, 4 | sylib 217 | . . . 4 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 → ∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉) |
6 | 5 | pm4.71ri 560 | . . 3 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
7 | 19.41vv 1955 | . . 3 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (∃𝑥∃𝑦 𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵)) |
9 | breq2 5074 | . . . 4 ⊢ (𝐵 = 〈𝑥, 𝑦〉 → (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) | |
10 | 9 | pm5.32i 574 | . . 3 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) |
11 | 10 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)𝐵) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉)) |
12 | brtxp2.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
13 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
14 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
15 | 12, 13, 14 | brtxp 34109 | . . . . 5 ⊢ (𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉 ↔ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
16 | 15 | anbi2i 622 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) |
17 | 3anass 1093 | . . . 4 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ (𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | |
18 | 16, 17 | bitr4i 277 | . . 3 ⊢ ((𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ (𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
19 | 18 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴(𝑅 ⊗ 𝑆)〈𝑥, 𝑦〉) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
20 | 8, 11, 19 | 3bitri 296 | 1 ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 〈cop 4564 class class class wbr 5070 × cxp 5578 ⊗ ctxp 34059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 |
This theorem is referenced by: brsuccf 34170 brrestrict 34178 |
Copyright terms: Public domain | W3C validator |