Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodcnveq Structured version   Visualization version   GIF version

Theorem pprodcnveq 33457
Description: A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
pprodcnveq pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)

Proof of Theorem pprodcnveq
StepHypRef Expression
1 dfpprod2 33456 . 2 pprod(𝑅, 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
2 dfpprod2 33456 . . . 4 pprod(𝑅, 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
32cnveqi 5709 . . 3 pprod(𝑅, 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
4 cnvin 5970 . . 3 (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V))))) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
5 cnvco1 33108 . . . . 5 ((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) = ((𝑅 ∘ (1st ↾ (V × V))) ∘ (1st ↾ (V × V)))
6 cnvco1 33108 . . . . . 6 (𝑅 ∘ (1st ↾ (V × V))) = ((1st ↾ (V × V)) ∘ 𝑅)
76coeq1i 5694 . . . . 5 ((𝑅 ∘ (1st ↾ (V × V))) ∘ (1st ↾ (V × V))) = (((1st ↾ (V × V)) ∘ 𝑅) ∘ (1st ↾ (V × V)))
8 coass 6085 . . . . 5 (((1st ↾ (V × V)) ∘ 𝑅) ∘ (1st ↾ (V × V))) = ((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V))))
95, 7, 83eqtri 2825 . . . 4 ((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) = ((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V))))
10 cnvco1 33108 . . . . 5 ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))) = ((𝑆 ∘ (2nd ↾ (V × V))) ∘ (2nd ↾ (V × V)))
11 cnvco1 33108 . . . . . 6 (𝑆 ∘ (2nd ↾ (V × V))) = ((2nd ↾ (V × V)) ∘ 𝑆)
1211coeq1i 5694 . . . . 5 ((𝑆 ∘ (2nd ↾ (V × V))) ∘ (2nd ↾ (V × V))) = (((2nd ↾ (V × V)) ∘ 𝑆) ∘ (2nd ↾ (V × V)))
13 coass 6085 . . . . 5 (((2nd ↾ (V × V)) ∘ 𝑆) ∘ (2nd ↾ (V × V))) = ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V))))
1410, 12, 133eqtri 2825 . . . 4 ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))) = ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V))))
159, 14ineq12i 4137 . . 3 (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V))))) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
163, 4, 153eqtri 2825 . 2 pprod(𝑅, 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
171, 16eqtr4i 2824 1 pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  Vcvv 3441  cin 3880   × cxp 5517  ccnv 5518  cres 5521  ccom 5523  1st c1st 7669  2nd c2nd 7670  pprodcpprod 33405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-txp 33428  df-pprod 33429
This theorem is referenced by:  brpprod3b  33461
  Copyright terms: Public domain W3C validator