Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodcnveq Structured version   Visualization version   GIF version

Theorem pprodcnveq 35878
Description: A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
pprodcnveq pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)

Proof of Theorem pprodcnveq
StepHypRef Expression
1 dfpprod2 35877 . 2 pprod(𝑅, 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
2 dfpprod2 35877 . . . 4 pprod(𝑅, 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
32cnveqi 5841 . . 3 pprod(𝑅, 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
4 cnvin 6120 . . 3 (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V))))) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
5 cnvco1 35753 . . . . 5 ((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) = ((𝑅 ∘ (1st ↾ (V × V))) ∘ (1st ↾ (V × V)))
6 cnvco1 35753 . . . . . 6 (𝑅 ∘ (1st ↾ (V × V))) = ((1st ↾ (V × V)) ∘ 𝑅)
76coeq1i 5826 . . . . 5 ((𝑅 ∘ (1st ↾ (V × V))) ∘ (1st ↾ (V × V))) = (((1st ↾ (V × V)) ∘ 𝑅) ∘ (1st ↾ (V × V)))
8 coass 6241 . . . . 5 (((1st ↾ (V × V)) ∘ 𝑅) ∘ (1st ↾ (V × V))) = ((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V))))
95, 7, 83eqtri 2757 . . . 4 ((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) = ((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V))))
10 cnvco1 35753 . . . . 5 ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))) = ((𝑆 ∘ (2nd ↾ (V × V))) ∘ (2nd ↾ (V × V)))
11 cnvco1 35753 . . . . . 6 (𝑆 ∘ (2nd ↾ (V × V))) = ((2nd ↾ (V × V)) ∘ 𝑆)
1211coeq1i 5826 . . . . 5 ((𝑆 ∘ (2nd ↾ (V × V))) ∘ (2nd ↾ (V × V))) = (((2nd ↾ (V × V)) ∘ 𝑆) ∘ (2nd ↾ (V × V)))
13 coass 6241 . . . . 5 (((2nd ↾ (V × V)) ∘ 𝑆) ∘ (2nd ↾ (V × V))) = ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V))))
1410, 12, 133eqtri 2757 . . . 4 ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))) = ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V))))
159, 14ineq12i 4184 . . 3 (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V))))) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
163, 4, 153eqtri 2757 . 2 pprod(𝑅, 𝑆) = (((1st ↾ (V × V)) ∘ (𝑅 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝑆 ∘ (2nd ↾ (V × V)))))
171, 16eqtr4i 2756 1 pprod(𝑅, 𝑆) = pprod(𝑅, 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cin 3916   × cxp 5639  ccnv 5640  cres 5643  ccom 5645  1st c1st 7969  2nd c2nd 7970  pprodcpprod 35826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-txp 35849  df-pprod 35850
This theorem is referenced by:  brpprod3b  35882
  Copyright terms: Public domain W3C validator