| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxor4 | Structured version Visualization version GIF version | ||
| Description: Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
| Ref | Expression |
|---|---|
| dfxor4 | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor2 1517 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
| 2 | df-or 849 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 3 | imnan 399 | . . . 4 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 4 | 3 | bicomi 224 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (𝜑 → ¬ 𝜓)) |
| 5 | 2, 4 | anbi12i 628 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓)) ↔ ((¬ 𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓))) |
| 6 | df-an 396 | . 2 ⊢ (((¬ 𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) | |
| 7 | 1, 5, 6 | 3bitri 297 | 1 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ⊻ wxo 1511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-xor 1512 |
| This theorem is referenced by: dfxor5 43780 |
| Copyright terms: Public domain | W3C validator |