![]() |
Metamath
Proof Explorer Theorem List (p. 429 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30171) |
![]() (30172-31694) |
![]() (31695-47852) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ntrk1k3eqk13 42801* | An interior function is both monotone and sub-linear if and only if it is finitely linear. (Contributed by RP, 18-Jun-2021.) |
⊢ ((∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡))) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡))) | ||
Theorem | ntrclsf1o 42802* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator we may characterize the relation as part of a 1-to-1 onto function. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
Theorem | ntrclsnvobr 42803* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then they are related the opposite way. (Contributed by RP, 21-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → 𝐾𝐷𝐼) | ||
Theorem | ntrclsiex 42804* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then those functions are maps of subsets to subsets. (Contributed by RP, 21-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
Theorem | ntrclskex 42805* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then those functions are maps of subsets to subsets. (Contributed by RP, 21-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
Theorem | ntrclsfv1 42806* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (𝐷‘𝐼) = 𝐾) | ||
Theorem | ntrclsfv2 42807* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (𝐷‘𝐾) = 𝐼) | ||
Theorem | ntrclselnel1 42808* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)))) | ||
Theorem | ntrclselnel2 42809* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in interior of the complement of a set and non-membership in the closure of the set. (Contributed by RP, 28-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑆))) | ||
Theorem | ntrclsfv 42810* | The value of the interior (closure) expressed in terms of the closure (interior). (Contributed by RP, 25-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘𝑆) = (𝐵 ∖ (𝐾‘(𝐵 ∖ 𝑆)))) | ||
Theorem | ntrclsfveq1 42811* | If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) | ||
Theorem | ntrclsfveq2 42812* | If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘(𝐵 ∖ 𝑆)) = 𝐶 ↔ (𝐾‘𝑆) = (𝐵 ∖ 𝐶))) | ||
Theorem | ntrclsfveq 42813* | If interior and closure functions are related then equality of a pair of function values is equivalent to equality of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘𝑆) = (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐾‘(𝐵 ∖ 𝑇)))) | ||
Theorem | ntrclsss 42814* | If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘𝑆) ⊆ (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)))) | ||
Theorem | ntrclsneine0lem 42815* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) | ||
Theorem | ntrclsneine0 42816* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 21-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐾‘𝑠))) | ||
Theorem | ntrclscls00 42817* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) | ||
Theorem | ntrclsiso 42818* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that either is isotonic hold equally. (Contributed by RP, 3-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) | ||
Theorem | ntrclsk2 42819* | An interior function is contracting if and only if the closure function is expansive. (Contributed by RP, 9-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐾‘𝑠))) | ||
Theorem | ntrclskb 42820* | The interiors of disjoint sets are disjoint if and only if the closures of sets that span the base set also span the base set. (Contributed by RP, 10-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | ||
Theorem | ntrclsk3 42821* | The intersection of interiors of a every pair is a subset of the interior of the intersection of the pair if an only if the closure of the union of every pair is a subset of the union of closures of the pair. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠 ∪ 𝑡)) ⊆ ((𝐾‘𝑠) ∪ (𝐾‘𝑡)))) | ||
Theorem | ntrclsk13 42822* | The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠 ∪ 𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡)))) | ||
Theorem | ntrclsk4 42823* | Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠))) | ||
Theorem | ntrneibex 42824* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | ntrneircomplex 42825* | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
Theorem | ntrneif1o 42826* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, we may characterize the relation as part of a 1-to-1 onto function. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | ntrneiiex 42827* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the interior function exists. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
Theorem | ntrneinex 42828* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | ntrneicnv 42829* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then converse of 𝐹 is known. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) | ||
Theorem | ntrneifv1 42830* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) | ||
Theorem | ntrneifv2 42831* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) | ||
Theorem | ntrneiel 42832* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) | ||
Theorem | ntrneifv3 42833* | The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑠)}) | ||
Theorem | ntrneineine0lem 42834* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) | ||
Theorem | ntrneineine1lem 42835* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) | ||
Theorem | ntrneifv4 42836* | The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) | ||
Theorem | ntrneiel2 42837* | Membership in iterated interior of a set is equivalent to there existing a particular neighborhood of that member such that points are members of that neighborhood if and only if the set is a neighborhood of each of those points. (Contributed by RP, 11-Jul-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐼‘(𝐼‘𝑆)) ↔ ∃𝑢 ∈ (𝑁‘𝑋)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑆 ∈ (𝑁‘𝑦)))) | ||
Theorem | ntrneineine0 42838* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅)) | ||
Theorem | ntrneineine1 42839* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ 𝒫 𝐵)) | ||
Theorem | ntrneicls00 42840* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) | ||
Theorem | ntrneicls11 42841* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) | ||
Theorem | ntrneiiso 42842* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior function is isotonic hold equally. (Contributed by RP, 3-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) | ||
Theorem | ntrneik2 42843* | An interior function is contracting if and only if all the neighborhoods of a point contain that point. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘𝑠) ⊆ 𝑠 ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) → 𝑥 ∈ 𝑠))) | ||
Theorem | ntrneix2 42844* | An interior (closure) function is expansive if and only if all subsets which contain a point are neighborhoods (convergents) of that point. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)))) | ||
Theorem | ntrneikb 42845* | The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ≠ ∅))) | ||
Theorem | ntrneixb 42846* | The interiors (closures) of sets that span the base set also span the base set if and only if the neighborhoods (convergents) of every point contain at least one of every pair of sets that span the base set. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
Theorem | ntrneik3 42847* | The intersection of interiors of any pair is a subset of the interior of the intersection if and only if the intersection of any two neighborhoods of a point is also a neighborhood. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | ||
Theorem | ntrneix3 42848* | The closure of the union of any pair is a subset of the union of closures if and only if the union of any pair belonging to the convergents of a point implies at least one of the pair belongs to the the convergents of that point. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∪ 𝑡)) ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) ∈ (𝑁‘𝑥) → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
Theorem | ntrneik13 42849* | The interior of the intersection of any pair equals intersection of interiors if and only if the intersection of any pair belonging to the neighborhood of a point is equivalent to both of the pair belonging to the neighborhood of that point. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) | ||
Theorem | ntrneix13 42850* | The closure of the union of any pair is equal to the union of closures if and only if the union of any pair belonging to the convergents of a point if equivalent to at least one of the pain belonging to the convergents of that point. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∪ 𝑡)) = ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
Theorem | ntrneik4w 42851* | Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)))) | ||
Theorem | ntrneik4 42852* | Idempotence of the interior function is equivalent to stating a set, 𝑠, is a neighborhood of a point, 𝑥 is equivalent to there existing a special neighborhood, 𝑢, of 𝑥 such that a point is an element of the special neighborhood if and only if 𝑠 is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) | ||
Theorem | clsneibex 42853 | If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | clsneircomplex 42854 | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
Theorem | clsneif1o 42855* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | clsneicnv 42856* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → ◡𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵))) | ||
Theorem | clsneikex 42857* | If closure and neighborhoods functions are related, the closure function exists. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
Theorem | clsneinex 42858* | If closure and neighborhoods functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | clsneiel1 42859* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) | ||
Theorem | clsneiel2 42860* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) | ||
Theorem | clsneifv3 42861* | Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑠))}) | ||
Theorem | clsneifv4 42862* | Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) | ||
Theorem | neicvgbex 42863 | If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | neicvgrcomplex 42864 | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
Theorem | neicvgf1o 42865* | If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | neicvgnvo 42866* | If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → ◡𝐻 = 𝐻) | ||
Theorem | neicvgnvor 42867* | If neighborhood and convergent functions are related by operator 𝐻, the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑀𝐻𝑁) | ||
Theorem | neicvgmex 42868* | If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | neicvgnex 42869* | If the neighborhoods and convergents functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | neicvgel1 42870* | A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑆 ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑀‘𝑋))) | ||
Theorem | neicvgel2 42871* | The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) | ||
Theorem | neicvgfv 42872* | The value of the neighborhoods (convergents) in terms of the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) | ||
Theorem | ntrrn 42873 | The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) | ||
Theorem | ntrf 42874 | The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) | ||
Theorem | ntrf2 42875 | The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) | ||
Theorem | ntrelmap 42876 | The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) | ||
Theorem | clsf2 42877 | The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22552. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) | ||
Theorem | clselmap 42878 | The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) | ||
Theorem | dssmapntrcls 42879* | The interior and closure operators on a topology are duals of each other. See also kur14lem2 34198. (Contributed by RP, 21-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝑋) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 = (𝐷‘𝐾)) | ||
Theorem | dssmapclsntr 42880* | The closure and interior operators on a topology are duals of each other. See also kur14lem2 34198. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝑋) ⇒ ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) | ||
Any neighborhood space is an open set topology and any open set topology is a neighborhood space. Seifert and Threlfall define a generic neighborhood space which is a superset of what is now generally used and related concepts and the following will show that those definitions apply to elements of Top. Seifert and Threlfall do not allow neighborhood spaces on the empty set while sn0top 22502 is an example of a topology with an empty base set. This divergence is unlikely to pose serious problems. | ||
Theorem | gneispa 42881* | Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) | ||
Theorem | gneispb 42882* | Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))) | ||
Theorem | gneispace2 42883* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) | ||
Theorem | gneispace3 42884* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) | ||
Theorem | gneispace 42885* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))))) | ||
Theorem | gneispacef 42886* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) | ||
Theorem | gneispacef2 42887* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:dom 𝐹⟶𝒫 𝒫 dom 𝐹) | ||
Theorem | gneispacefun 42888* | A generic neighborhood space is a function. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → Fun 𝐹) | ||
Theorem | gneispacern 42889* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) | ||
Theorem | gneispacern2 42890* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹) | ||
Theorem | gneispace0nelrn 42891* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) | ||
Theorem | gneispace0nelrn2 42892* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) | ||
Theorem | gneispace0nelrn3 42893* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ¬ ∅ ∈ ran 𝐹) | ||
Theorem | gneispaceel 42894* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) | ||
Theorem | gneispaceel2 42895* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) | ||
Theorem | gneispacess 42896* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) | ||
Theorem | gneispacess2 42897* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) ∧ (𝑁 ∈ (𝐹‘𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹 ∧ 𝑁 ⊆ 𝑆)) → 𝑆 ∈ (𝐹‘𝑃)) | ||
See https://kerodon.net/ for a work in progress by Jacob Lurie. | ||
See https://kerodon.net/tag/0004 for introduction to the topological simplex of dimension 𝑁. | ||
Theorem | k0004lem1 42898 | Application of ssin 4231 to range of a function. (Contributed by RP, 1-Apr-2021.) |
⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) | ||
Theorem | k0004lem2 42899 | A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) | ||
Theorem | k0004lem3 42900 | When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∈ (𝐵 ↑m {𝐴}) ∧ (𝐹‘𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |