![]() |
Metamath
Proof Explorer Theorem List (p. 429 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ntrclsfveq1 42801* | If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘𝑆) = 𝐶 ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐵 ∖ 𝐶))) | ||
Theorem | ntrclsfveq2 42802* | If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘(𝐵 ∖ 𝑆)) = 𝐶 ↔ (𝐾‘𝑆) = (𝐵 ∖ 𝐶))) | ||
Theorem | ntrclsfveq 42803* | If interior and closure functions are related then equality of a pair of function values is equivalent to equality of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘𝑆) = (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑆)) = (𝐾‘(𝐵 ∖ 𝑇)))) | ||
Theorem | ntrclsss 42804* | If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐼‘𝑆) ⊆ (𝐼‘𝑇) ↔ (𝐾‘(𝐵 ∖ 𝑇)) ⊆ (𝐾‘(𝐵 ∖ 𝑆)))) | ||
Theorem | ntrclsneine0lem 42805* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) | ||
Theorem | ntrclsneine0 42806* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 21-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐾‘𝑠))) | ||
Theorem | ntrclscls00 42807* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 1-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ (𝐾‘∅) = ∅)) | ||
Theorem | ntrclsiso 42808* | If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that either is isotonic hold equally. (Contributed by RP, 3-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐾‘𝑠) ⊆ (𝐾‘𝑡)))) | ||
Theorem | ntrclsk2 42809* | An interior function is contracting if and only if the closure function is expansive. (Contributed by RP, 9-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐾‘𝑠))) | ||
Theorem | ntrclskb 42810* | The interiors of disjoint sets are disjoint if and only if the closures of sets that span the base set also span the base set. (Contributed by RP, 10-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐾‘𝑠) ∪ (𝐾‘𝑡)) = 𝐵))) | ||
Theorem | ntrclsk3 42811* | The intersection of interiors of a every pair is a subset of the interior of the intersection of the pair if an only if the closure of the union of every pair is a subset of the union of closures of the pair. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠 ∪ 𝑡)) ⊆ ((𝐾‘𝑠) ∪ (𝐾‘𝑡)))) | ||
Theorem | ntrclsk13 42812* | The interior of the intersection of any pair is equal to the intersection of the interiors if and only if the closure of the unions of any pair is equal to the union of closures. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠 ∪ 𝑡)) = ((𝐾‘𝑠) ∪ (𝐾‘𝑡)))) | ||
Theorem | ntrclsk4 42813* | Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021.) |
⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) & ⊢ 𝐷 = (𝑂‘𝐵) & ⊢ (𝜑 → 𝐼𝐷𝐾) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝐾‘(𝐾‘𝑠)) = (𝐾‘𝑠))) | ||
Theorem | ntrneibex 42814* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | ntrneircomplex 42815* | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
Theorem | ntrneif1o 42816* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, we may characterize the relation as part of a 1-to-1 onto function. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | ntrneiiex 42817* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the interior function exists. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
Theorem | ntrneinex 42818* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the neighborhood function exists. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | ntrneicnv 42819* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then converse of 𝐹 is known. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ◡𝐹 = (𝐵𝑂𝒫 𝐵)) | ||
Theorem | ntrneifv1 42820* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of 𝐹 is the neighborhood function. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (𝐹‘𝐼) = 𝑁) | ||
Theorem | ntrneifv2 42821* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the function value of converse of 𝐹 is the interior function. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (◡𝐹‘𝑁) = 𝐼) | ||
Theorem | ntrneiel 42822* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐼‘𝑆) ↔ 𝑆 ∈ (𝑁‘𝑋))) | ||
Theorem | ntrneifv3 42823* | The value of the neighbors (convergents) expressed in terms of the interior (closure) function. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ 𝑋 ∈ (𝐼‘𝑠)}) | ||
Theorem | ntrneineine0lem 42824* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ ∅)) | ||
Theorem | ntrneineine1lem 42825* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼‘𝑠) ↔ (𝑁‘𝑋) ≠ 𝒫 𝐵)) | ||
Theorem | ntrneifv4 42826* | The value of the interior (closure) expressed in terms of the neighbors (convergents) function. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑆 ∈ (𝑁‘𝑥)}) | ||
Theorem | ntrneiel2 42827* | Membership in iterated interior of a set is equivalent to there existing a particular neighborhood of that member such that points are members of that neighborhood if and only if the set is a neighborhood of each of those points. (Contributed by RP, 11-Jul-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐼‘(𝐼‘𝑆)) ↔ ∃𝑢 ∈ (𝑁‘𝑋)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑆 ∈ (𝑁‘𝑦)))) | ||
Theorem | ntrneineine0 42828* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ ∅)) | ||
Theorem | ntrneineine1 42829* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑥 ∈ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) ≠ 𝒫 𝐵)) | ||
Theorem | ntrneicls00 42830* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the closure of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ((𝐼‘𝐵) = 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐵 ∈ (𝑁‘𝑥))) | ||
Theorem | ntrneicls11 42831* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) | ||
Theorem | ntrneiiso 42832* | If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior function is isotonic hold equally. (Contributed by RP, 3-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝑠 ⊆ 𝑡 → (𝐼‘𝑠) ⊆ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑠 ⊆ 𝑡) → 𝑡 ∈ (𝑁‘𝑥)))) | ||
Theorem | ntrneik2 42833* | An interior function is contracting if and only if all the neighborhoods of a point contain that point. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘𝑠) ⊆ 𝑠 ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) → 𝑥 ∈ 𝑠))) | ||
Theorem | ntrneix2 42834* | An interior (closure) function is expansive if and only if all subsets which contain a point are neighborhoods (convergents) of that point. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑠 ⊆ (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑥 ∈ 𝑠 → 𝑠 ∈ (𝑁‘𝑥)))) | ||
Theorem | ntrneikb 42835* | The interiors of disjoint sets are disjoint if and only if the neighborhoods of every point contain no disjoint sets. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) = ∅ → ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) = ∅) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ≠ ∅))) | ||
Theorem | ntrneixb 42836* | The interiors (closures) of sets that span the base set also span the base set if and only if the neighborhoods (convergents) of every point contain at least one of every pair of sets that span the base set. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) = 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) = 𝐵 → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
Theorem | ntrneik3 42837* | The intersection of interiors of any pair is a subset of the interior of the intersection if and only if the intersection of any two neighborhoods of a point is also a neighborhood. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ⊆ (𝐼‘(𝑠 ∩ 𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥)) → (𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥)))) | ||
Theorem | ntrneix3 42838* | The closure of the union of any pair is a subset of the union of closures if and only if the union of any pair belonging to the convergents of a point implies at least one of the pair belongs to the the convergents of that point. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∪ 𝑡)) ⊆ ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) ∈ (𝑁‘𝑥) → (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
Theorem | ntrneik13 42839* | The interior of the intersection of any pair equals intersection of interiors if and only if the intersection of any pair belonging to the neighborhood of a point is equivalent to both of the pair belonging to the neighborhood of that point. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∩ 𝑡)) = ((𝐼‘𝑠) ∩ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∩ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∧ 𝑡 ∈ (𝑁‘𝑥))))) | ||
Theorem | ntrneix13 42840* | The closure of the union of any pair is equal to the union of closures if and only if the union of any pair belonging to the convergents of a point if equivalent to at least one of the pain belonging to the convergents of that point. (Contributed by RP, 19-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠 ∪ 𝑡)) = ((𝐼‘𝑠) ∪ (𝐼‘𝑡)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵∀𝑡 ∈ 𝒫 𝐵((𝑠 ∪ 𝑡) ∈ (𝑁‘𝑥) ↔ (𝑠 ∈ (𝑁‘𝑥) ∨ 𝑡 ∈ (𝑁‘𝑥))))) | ||
Theorem | ntrneik4w 42841* | Idempotence of the interior function is equivalent to saying a set is a neighborhood of a point if and only if the interior of the set is a neighborhood of a point. (Contributed by RP, 11-Jul-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)))) | ||
Theorem | ntrneik4 42842* | Idempotence of the interior function is equivalent to stating a set, 𝑠, is a neighborhood of a point, 𝑥 is equivalent to there existing a special neighborhood, 𝑢, of 𝑥 such that a point is an element of the special neighborhood if and only if 𝑠 is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ (𝜑 → 𝐼𝐹𝑁) ⇒ ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) | ||
Theorem | clsneibex 42843 | If (pseudo-)closure and (pseudo-)neighborhood functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | clsneircomplex 42844 | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
Theorem | clsneif1o 42845* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | clsneicnv 42846* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → ◡𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵))) | ||
Theorem | clsneikex 42847* | If closure and neighborhoods functions are related, the closure function exists. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) | ||
Theorem | clsneinex 42848* | If closure and neighborhoods functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | clsneiel1 42849* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝑆) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋))) | ||
Theorem | clsneiel2 42850* | If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) | ||
Theorem | clsneifv3 42851* | Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑠))}) | ||
Theorem | clsneifv4 42852* | Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐻 = (𝐹 ∘ 𝐷) & ⊢ (𝜑 → 𝐾𝐻𝑁) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘𝑆) = {𝑥 ∈ 𝐵 ∣ ¬ (𝐵 ∖ 𝑆) ∈ (𝑁‘𝑥)}) | ||
Theorem | neicvgbex 42853 | If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, 𝐻, then the base set exists. (Contributed by RP, 4-Jun-2021.) |
⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
Theorem | neicvgrcomplex 42854 | The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) | ||
Theorem | neicvgf1o 42855* | If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | neicvgnvo 42856* | If neighborhood and convergent functions are related by operator 𝐻, it is its own converse function. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → ◡𝐻 = 𝐻) | ||
Theorem | neicvgnvor 42857* | If neighborhood and convergent functions are related by operator 𝐻, the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑀𝐻𝑁) | ||
Theorem | neicvgmex 42858* | If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | neicvgnex 42859* | If the neighborhoods and convergents functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) ⇒ ⊢ (𝜑 → 𝑁 ∈ (𝒫 𝒫 𝐵 ↑m 𝐵)) | ||
Theorem | neicvgel1 42860* | A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → (𝑆 ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ 𝑆) ∈ (𝑀‘𝑋))) | ||
Theorem | neicvgel2 42861* | The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) ⇒ ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) | ||
Theorem | neicvgfv 42862* | The value of the neighborhoods (convergents) in terms of the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.) |
⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) & ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) & ⊢ 𝐷 = (𝑃‘𝐵) & ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) & ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) & ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) & ⊢ (𝜑 → 𝑁𝐻𝑀) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = {𝑠 ∈ 𝒫 𝐵 ∣ ¬ (𝐵 ∖ 𝑠) ∈ (𝑀‘𝑋)}) | ||
Theorem | ntrrn 42863 | The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) | ||
Theorem | ntrf 42864 | The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝐽) | ||
Theorem | ntrf2 42865 | The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼:𝒫 𝑋⟶𝒫 𝑋) | ||
Theorem | ntrelmap 42866 | The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐼 = (int‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) | ||
Theorem | clsf2 42867 | The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22551. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐾:𝒫 𝑋⟶𝒫 𝑋) | ||
Theorem | clselmap 42868 | The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) ⇒ ⊢ (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋)) | ||
Theorem | dssmapntrcls 42869* | The interior and closure operators on a topology are duals of each other. See also kur14lem2 34193. (Contributed by RP, 21-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝑋) ⇒ ⊢ (𝐽 ∈ Top → 𝐼 = (𝐷‘𝐾)) | ||
Theorem | dssmapclsntr 42870* | The closure and interior operators on a topology are duals of each other. See also kur14lem2 34193. (Contributed by RP, 22-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) & ⊢ 𝐷 = (𝑂‘𝑋) ⇒ ⊢ (𝐽 ∈ Top → 𝐾 = (𝐷‘𝐼)) | ||
Any neighborhood space is an open set topology and any open set topology is a neighborhood space. Seifert and Threlfall define a generic neighborhood space which is a superset of what is now generally used and related concepts and the following will show that those definitions apply to elements of Top. Seifert and Threlfall do not allow neighborhood spaces on the empty set while sn0top 22501 is an example of a topology with an empty base set. This divergence is unlikely to pose serious problems. | ||
Theorem | gneispa 42871* | Each point 𝑝 of the neighborhood space has at least one neighborhood; each neighborhood of 𝑝 contains 𝑝. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ∀𝑝 ∈ 𝑋 (((nei‘𝐽)‘{𝑝}) ≠ ∅ ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑝})𝑝 ∈ 𝑛)) | ||
Theorem | gneispb 42872* | Given a neighborhood 𝑁 of 𝑃, each subset of the neighborhood space containing this neighborhood is also a neighborhood of 𝑃. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∀𝑠 ∈ 𝒫 𝑋(𝑁 ⊆ 𝑠 → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))) | ||
Theorem | gneispace2 42873* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) | ||
Theorem | gneispace3 42874* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) | ||
Theorem | gneispace 42875* | The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))))) | ||
Theorem | gneispacef 42876* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:dom 𝐹⟶(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) | ||
Theorem | gneispacef2 42877* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:dom 𝐹⟶𝒫 𝒫 dom 𝐹) | ||
Theorem | gneispacefun 42878* | A generic neighborhood space is a function. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → Fun 𝐹) | ||
Theorem | gneispacern 42879* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) | ||
Theorem | gneispacern2 42880* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹) | ||
Theorem | gneispace0nelrn 42881* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) | ||
Theorem | gneispace0nelrn2 42882* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) | ||
Theorem | gneispace0nelrn3 42883* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ¬ ∅ ∈ ran 𝐹) | ||
Theorem | gneispaceel 42884* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)𝑝 ∈ 𝑛) | ||
Theorem | gneispaceel2 42885* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ∧ 𝑁 ∈ (𝐹‘𝑃)) → 𝑃 ∈ 𝑁) | ||
Theorem | gneispacess 42886* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) | ||
Theorem | gneispacess2 42887* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} ⇒ ⊢ (((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) ∧ (𝑁 ∈ (𝐹‘𝑃) ∧ 𝑆 ∈ 𝒫 dom 𝐹 ∧ 𝑁 ⊆ 𝑆)) → 𝑆 ∈ (𝐹‘𝑃)) | ||
See https://kerodon.net/ for a work in progress by Jacob Lurie. | ||
See https://kerodon.net/tag/0004 for introduction to the topological simplex of dimension 𝑁. | ||
Theorem | k0004lem1 42888 | Application of ssin 4230 to range of a function. (Contributed by RP, 1-Apr-2021.) |
⊢ (𝐷 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐷)) | ||
Theorem | k0004lem2 42889 | A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑m 𝐴))) | ||
Theorem | k0004lem3 42890 | When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∈ (𝐵 ↑m {𝐴}) ∧ (𝐹‘𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩})) | ||
Theorem | k0004val 42891* | The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) | ||
Theorem | k0004ss1 42892* | The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | ||
Theorem | k0004ss2 42893* | The topological simplex of dimension 𝑁 is a subset of the base set of a real vector space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(ℝ^‘(1...(𝑁 + 1))))) | ||
Theorem | k0004ss3 42894* | The topological simplex of dimension 𝑁 is a subset of the base set of Euclidean space of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (Base‘(𝔼hil‘(𝑁 + 1)))) | ||
Theorem | k0004val0 42895* | The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) ⇒ ⊢ (𝐴‘0) = {{⟨1, 1⟩}} | ||
Theorem | inductionexd 42896 | Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5)) | ||
Theorem | wwlemuld 42897 | Natural deduction form of lemul2d 13059. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)) & ⊢ (𝜑 → 0 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | leeq1d 42898 | Specialization of breq1d 5158 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐶) | ||
Theorem | leeq2d 42899 | Specialization of breq2d 5160 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐷) | ||
Theorem | absmulrposd 42900 | Specialization of absmuld with absidd 15368. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = (𝐴 · (abs‘𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |