| Metamath
Proof Explorer Theorem List (p. 429 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eluzrabdioph 42801* | Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} ∈ (Dioph‘𝑁)) | ||
| Theorem | elnnrabdioph 42802* | Diophantine set builder for positivity. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ ℕ} ∈ (Dioph‘𝑁)) | ||
| Theorem | ltrabdioph 42803* | Diophantine set builder for the strict less than relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | nerabdioph 42804* | Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | dvdsrabdioph 42805* | Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∥ 𝐵} ∈ (Dioph‘𝑁)) | ||
| Theorem | eldioph4b 42806* | Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ 𝑊 ∈ V & ⊢ ¬ 𝑊 ∈ Fin & ⊢ (𝑊 ∩ ℕ) = ∅ ⇒ ⊢ (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑡 ∪ 𝑤)) = 0})) | ||
| Theorem | eldioph4i 42807* | Forward-only version of eldioph4b 42806. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
| ⊢ 𝑊 ∈ V & ⊢ ¬ 𝑊 ∈ Fin & ⊢ (𝑊 ∩ ℕ) = ∅ ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) | ||
| Theorem | diophren 42808* | Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
| ⊢ ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0 ↑m (1...𝑀)) ∣ (𝑎 ∘ 𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)) | ||
| Theorem | rabrenfdioph 42809* | Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) | ||
| Theorem | rabren3dioph 42810* | Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
| ⊢ (((𝑎‘1) = (𝑏‘𝑋) ∧ (𝑎‘2) = (𝑏‘𝑌) ∧ (𝑎‘3) = (𝑏‘𝑍)) → (𝜑 ↔ 𝜓)) & ⊢ 𝑋 ∈ (1...𝑁) & ⊢ 𝑌 ∈ (1...𝑁) & ⊢ 𝑍 ∈ (1...𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) | ||
| Theorem | fphpd 42811* | Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷)) | ||
| Theorem | fphpdo 42812* | Pigeonhole principle for sets of real numbers with implicit output reordering. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝑧 = 𝑥 → 𝐶 = 𝐷) & ⊢ (𝑧 = 𝑦 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 < 𝑦 ∧ 𝐷 = 𝐸)) | ||
| Theorem | ctbnfien 42813 | An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) | ||
| Theorem | fiphp3d 42814* | Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ≈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | ||
| Theorem | rencldnfilem 42815* | Lemma for rencldnfi 42816. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵 ∈ 𝐴)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐴 (abs‘(𝑦 − 𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin) | ||
| Theorem | rencldnfi 42816* | A set of real numbers which comes arbitrarily close to some target yet excludes it is infinite. The work is done in rencldnfilem 42815 using infima; this theorem removes the requirement that A be nonempty. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ 𝐴) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐴 (abs‘(𝑦 − 𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin) | ||
| Theorem | irrapxlem1 42817* | Lemma for irrapx1 42823. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 42812 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))) | ||
| Theorem | irrapxlem2 42818* | Lemma for irrapx1 42823. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))) | ||
| Theorem | irrapxlem3 42819* | Lemma for irrapx1 42823. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)) | ||
| Theorem | irrapxlem4 42820* | Lemma for irrapx1 42823. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥 ≤ 𝐵, 𝐵, 𝑥))) | ||
| Theorem | irrapxlem5 42821* | Lemma for irrapx1 42823. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥 − 𝐴)) < 𝐵 ∧ (abs‘(𝑥 − 𝐴)) < ((denom‘𝑥)↑-2))) | ||
| Theorem | irrapxlem6 42822* | Lemma for irrapx1 42823. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) | ||
| Theorem | irrapx1 42823* | Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| ⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) | ||
| Theorem | pellexlem1 42824 | Lemma for pellex 42830. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0) | ||
| Theorem | pellexlem2 42825 | Lemma for pellex 42830. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| ⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷)))) | ||
| Theorem | pellexlem3 42826* | Lemma for pellex 42830. To each good rational approximation of (√‘𝐷), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) | ||
| Theorem | pellexlem4 42827* | Lemma for pellex 42830. Invoking irrapx1 42823, we have infinitely many near-solutions. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
| ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ) | ||
| Theorem | pellexlem5 42828* | Lemma for pellex 42830. Invoking fiphp3d 42814, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)) | ||
| Theorem | pellexlem6 42829* | Lemma for pellex 42830. Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → ¬ (√‘𝐷) ∈ ℚ) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ ℕ) & ⊢ (𝜑 → ¬ (𝐴 = 𝐸 ∧ 𝐵 = 𝐹)) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶) & ⊢ (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶) & ⊢ (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) & ⊢ (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) | ||
| Theorem | pellex 42830* | Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1) | ||
| Syntax | csquarenn 42831 | Extend class notation to include the set of square positive integers. |
| class ◻NN | ||
| Syntax | cpell1qr 42832 | Extend class notation to include the class of quadrant-1 Pell solutions. |
| class Pell1QR | ||
| Syntax | cpell1234qr 42833 | Extend class notation to include the class of any-quadrant Pell solutions. |
| class Pell1234QR | ||
| Syntax | cpell14qr 42834 | Extend class notation to include the class of positive Pell solutions. |
| class Pell14QR | ||
| Syntax | cpellfund 42835 | Extend class notation to include the Pell-equation fundamental solution function. |
| class PellFund | ||
| Definition | df-squarenn 42836 | Define the set of square positive integers. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ◻NN = {𝑥 ∈ ℕ ∣ (√‘𝑥) ∈ ℚ} | ||
| Definition | df-pell1qr 42837* | Define the solutions of a Pell equation in the first quadrant. To avoid pair pain, we represent this via the canonical embedding into the reals. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ Pell1QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
| Definition | df-pell14qr 42838* | Define the positive solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ Pell14QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
| Definition | df-pell1234qr 42839* | Define the general solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ Pell1234QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
| Definition | df-pellfund 42840* | A function mapping Pell discriminants to the corresponding fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
| ⊢ PellFund = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) | ||
| Theorem | pell1qrval 42841* | Value of the set of first-quadrant Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
| Theorem | elpell1qr 42842* | Membership in a first-quadrant Pell solution set. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
| Theorem | pell14qrval 42843* | Value of the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
| Theorem | elpell14qr 42844* | Membership in the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
| Theorem | pell1234qrval 42845* | Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
| Theorem | elpell1234qr 42846* | Membership in the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
| Theorem | pell1234qrre 42847 | General Pell solutions are (coded as) real numbers. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | ||
| Theorem | pell1234qrne0 42848 | No solution to a Pell equation is zero. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0) | ||
| Theorem | pell1234qrreccl 42849 | General solutions of the Pell equation are closed under reciprocals. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷)) | ||
| Theorem | pell1234qrmulcl 42850 | General solutions of the Pell equation are closed under multiplication. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷)) | ||
| Theorem | pell14qrss1234 42851 | A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) | ||
| Theorem | pell14qrre 42852 | A positive Pell solution is a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ) | ||
| Theorem | pell14qrne0 42853 | A positive Pell solution is a nonzero number. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ≠ 0) | ||
| Theorem | pell14qrgt0 42854 | A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴) | ||
| Theorem | pell14qrrp 42855 | A positive Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ+) | ||
| Theorem | pell1234qrdich 42856 | A general Pell solution is either a positive solution, or its negation is. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) | ||
| Theorem | elpell14qr2 42857 | A number is a positive Pell solution iff it is positive and a Pell solution, justifying our name choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) | ||
| Theorem | pell14qrmulcl 42858 | Positive Pell solutions are closed under multiplication. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell14QR‘𝐷)) | ||
| Theorem | pell14qrreccl 42859 | Positive Pell solutions are closed under reciprocal. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 / 𝐴) ∈ (Pell14QR‘𝐷)) | ||
| Theorem | pell14qrdivcl 42860 | Positive Pell solutions are closed under division. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ (Pell14QR‘𝐷)) → (𝐴 / 𝐵) ∈ (Pell14QR‘𝐷)) | ||
| Theorem | pell14qrexpclnn0 42861 | Lemma for pell14qrexpcl 42862. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ (Pell14QR‘𝐷)) | ||
| Theorem | pell14qrexpcl 42862 | Positive Pell solutions are closed under integer powers. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 𝐵 ∈ ℤ) → (𝐴↑𝐵) ∈ (Pell14QR‘𝐷)) | ||
| Theorem | pell1qrss14 42863 | First-quadrant Pell solutions are a subset of the positive solutions. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷)) | ||
| Theorem | pell14qrdich 42864 | A positive Pell solution is either in the first quadrant, or its reciprocal is. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷))) | ||
| Theorem | pell1qrge1 42865 | A Pell solution in the first quadrant is at least 1. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴) | ||
| Theorem | pell1qr1 42866 | 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷)) | ||
| Theorem | elpell1qr2 42867 | The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴))) | ||
| Theorem | pell1qrgaplem 42868 | Lemma for pell1qrgap 42869. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ (((𝐷 ∈ ℕ ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0)) ∧ (1 < (𝐴 + ((√‘𝐷) · 𝐵)) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1)) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (𝐴 + ((√‘𝐷) · 𝐵))) | ||
| Theorem | pell1qrgap 42869 | First-quadrant Pell solutions are bounded away from 1. (This particular bound allows to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) | ||
| Theorem | pell14qrgap 42870 | Positive Pell solutions are bounded away from 1. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ 𝐴) | ||
| Theorem | pell14qrgapw 42871 | Positive Pell solutions are bounded away from 1, with a friendlier bound. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → 2 < 𝐴) | ||
| Theorem | pellqrexplicit 42872 | Condition for a calculated real to be a Pell solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 1) → (𝐴 + ((√‘𝐷) · 𝐵)) ∈ (Pell1QR‘𝐷)) | ||
| Theorem | infmrgelbi 42873* | Any lower bound of a nonempty set of real numbers is less than or equal to its infimum, one-direction version. (Contributed by Stefan O'Rear, 1-Sep-2013.) (Revised by AV, 17-Sep-2020.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥) → 𝐵 ≤ inf(𝐴, ℝ, < )) | ||
| Theorem | pellqrex 42874* | There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥) | ||
| Theorem | pellfundval 42875* | Value of the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) = inf({𝑥 ∈ (Pell14QR‘𝐷) ∣ 1 < 𝑥}, ℝ, < )) | ||
| Theorem | pellfundre 42876 | The fundamental solution of a Pell equation exists as a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | ||
| Theorem | pellfundge 42877 | Lower bound on the fundamental solution of a Pell equation. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | ||
| Theorem | pellfundgt1 42878 | Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) | ||
| Theorem | pellfundlb 42879 | A nontrivial first quadrant solution is at least as large as the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Proof shortened by AV, 15-Sep-2020.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 < 𝐴) → (PellFund‘𝐷) ≤ 𝐴) | ||
| Theorem | pellfundglb 42880* | If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ ℝ ∧ (PellFund‘𝐷) < 𝐴) → ∃𝑥 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑥 ∧ 𝑥 < 𝐴)) | ||
| Theorem | pellfundex 42881 |
The fundamental solution as an infimum is itself a solution, showing
that the solution set is discrete.
Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 42871. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)) | ||
| Theorem | pellfund14gap 42882 | There are no solutions between 1 and the fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷) ∧ (1 ≤ 𝐴 ∧ 𝐴 < (PellFund‘𝐷))) → 𝐴 = 1) | ||
| Theorem | pellfundrp 42883 | The fundamental Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+) | ||
| Theorem | pellfundne1 42884 | The fundamental Pell solution is never 1. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ≠ 1) | ||
Section should be obsolete because its contents are covered by section "Logarithms to an arbitrary base" now. | ||
| Theorem | reglogcl 42885 | General logarithm is a real number. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbcl 26690 instead. |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → ((log‘𝐴) / (log‘𝐵)) ∈ ℝ) | ||
| Theorem | reglogltb 42886 | General logarithm preserves "less than". (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logblt 26701 instead. |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝐶 ∈ ℝ+ ∧ 1 < 𝐶)) → (𝐴 < 𝐵 ↔ ((log‘𝐴) / (log‘𝐶)) < ((log‘𝐵) / (log‘𝐶)))) | ||
| Theorem | reglogleb 42887 | General logarithm preserves ≤. (Contributed by Stefan O'Rear, 19-Oct-2014.) (New usage is discouraged.) Use logbleb 26700 instead. |
| ⊢ (((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ (𝐶 ∈ ℝ+ ∧ 1 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ ((log‘𝐴) / (log‘𝐶)) ≤ ((log‘𝐵) / (log‘𝐶)))) | ||
| Theorem | reglogmul 42888 | Multiplication law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbmul 26694 instead. |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐴 · 𝐵)) / (log‘𝐶)) = (((log‘𝐴) / (log‘𝐶)) + ((log‘𝐵) / (log‘𝐶)))) | ||
| Theorem | reglogexp 42889 | Power law for general log. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbzexp 26693 instead. |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐴↑𝑁)) / (log‘𝐶)) = (𝑁 · ((log‘𝐴) / (log‘𝐶)))) | ||
| Theorem | reglogbas 42890 | General log of the base is 1. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logbid1 26685 instead. |
| ⊢ ((𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1) → ((log‘𝐶) / (log‘𝐶)) = 1) | ||
| Theorem | reglog1 42891 | General log of 1 is 0. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use logb1 26686 instead. |
| ⊢ ((𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1) → ((log‘1) / (log‘𝐶)) = 0) | ||
| Theorem | reglogexpbas 42892 | General log of a power of the base is the exponent. (Contributed by Stefan O'Rear, 19-Sep-2014.) (New usage is discouraged.) Use relogbexp 26697 instead. |
| ⊢ ((𝑁 ∈ ℤ ∧ (𝐶 ∈ ℝ+ ∧ 𝐶 ≠ 1)) → ((log‘(𝐶↑𝑁)) / (log‘𝐶)) = 𝑁) | ||
| Theorem | pellfund14 42893* | Every positive Pell solution is a power of the fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥)) | ||
| Theorem | pellfund14b 42894* | The positive Pell solutions are precisely the integer powers of the fundamental solution. To get the general solution set (which we will not be using), throw in a copy of Z/2Z. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ ∃𝑥 ∈ ℤ 𝐴 = ((PellFund‘𝐷)↑𝑥))) | ||
| Syntax | crmx 42895 | Extend class notation to include the Robertson-Matiyasevich X sequence. |
| class Xrm | ||
| Syntax | crmy 42896 | Extend class notation to include the Robertson-Matiyasevich Y sequence. |
| class Yrm | ||
| Definition | df-rmx 42897* | Define the X sequence as the rational part of some solution of a special Pell equation. See frmx 42909 and rmxyval 42911 for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| ⊢ Xrm = (𝑎 ∈ (ℤ≥‘2), 𝑛 ∈ ℤ ↦ (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd ‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) | ||
| Definition | df-rmy 42898* | Define the X sequence as the irrational part of some solution of a special Pell equation. See frmy 42910 and rmxyval 42911 for a more useful but non-eliminable definition. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| ⊢ Yrm = (𝑎 ∈ (ℤ≥‘2), 𝑛 ∈ ℤ ↦ (2nd ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd ‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) | ||
| Theorem | rmxfval 42899* | Value of the X sequence. Not used after rmxyval 42911 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) = (1st ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) | ||
| Theorem | rmyfval 42900* | Value of the Y sequence. Not used after rmxyval 42911 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) = (2nd ‘(◡(𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd ‘𝑏))))‘((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |