HomeHome Metamath Proof Explorer
Theorem List (p. 429 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 42801-42900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoreminfleinf 42801* If any element of 𝐵 can be approximated from above by members of 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐴 ⊆ ℝ*)    &   (𝜑𝐵 ⊆ ℝ*)    &   ((𝜑𝑥𝐵𝑦 ∈ ℝ+) → ∃𝑧𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦))       (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
 
Theoremxralrple4 42802* Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))))
 
Theoremxralrple3 42803* Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐶)       (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥))))
 
Theoremeluzelzd 42804 A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))       (𝜑𝑁 ∈ ℤ)
 
Theoremsuplesup2 42805* If any element of 𝐴 is less than or equal to an element in 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴 ⊆ ℝ*)    &   (𝜑𝐵 ⊆ ℝ*)    &   ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)       (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
 
Theoremrecnnltrp 42806 𝑁 is a natural number large enough that its reciprocal is smaller than the given positive 𝐸. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑁 = ((⌊‘(1 / 𝐸)) + 1)       (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸))
 
Theoremnnn0 42807 The set of positive integers is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
ℕ ≠ ∅
 
Theoremfzct 42808 A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝑁...𝑀) ≼ ω
 
Theoremrpgtrecnn 42809* Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝐴 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
 
Theoremfzossuz 42810 A half-open integer interval is a subset of an upper set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝑀..^𝑁) ⊆ (ℤ𝑀)
 
Theoreminfxrrefi 42811 The real and extended real infima match when the set is finite. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
 
Theoremxrralrecnnle 42812* Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑛𝜑    &   (𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
 
Theoremfzoct 42813 A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝑁..^𝑀) ≼ ω
 
Theoremfrexr 42814 A function taking real values, is a function taking extended real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴⟶ℝ)       (𝜑𝐹:𝐴⟶ℝ*)
 
Theoremnnrecrp 42815 The reciprocal of a positive natural number is a positive real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ+)
 
Theoremreclt0d 42816 The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑 → (1 / 𝐴) < 0)
 
Theoremlt0neg1dd 42817 If a number is negative, its negative is positive. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 0)       (𝜑 → 0 < -𝐴)
 
Theoremmnfled 42818 Minus infinity is less than or equal to any extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)       (𝜑 → -∞ ≤ 𝐴)
 
Theoreminfxrcld 42819 The infimum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ⊆ ℝ*)       (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
 
Theoremxrralrecnnge 42820* Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑛𝜑    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ*)       (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵))
 
Theoremreclt0 42821 The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0))
 
Theoremltmulneg 42822 Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 < 0)       (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
 
Theoremallbutfi 42823* For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 42538 and eliuniin2 42558 (here, the precondition can be dropped; see eliuniincex 42548). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝑍 = (ℤ𝑀)    &   𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵       (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
 
Theoremltdiv23neg 42824 Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 < 0)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 < 0)       (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))
 
Theoremxreqnltd 42825 A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐴 = 𝐵)       (𝜑 → ¬ 𝐴 < 𝐵)
 
Theoremmnfnre2 42826 Minus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
¬ -∞ ∈ ℝ
 
Theoremzssxr 42827 The integers are a subset of the extended reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
ℤ ⊆ ℝ*
 
Theoremfisupclrnmpt 42828* A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝑅 Or 𝐴)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐵 ≠ ∅)    &   ((𝜑𝑥𝐵) → 𝐶𝐴)       (𝜑 → sup(ran (𝑥𝐵𝐶), 𝐴, 𝑅) ∈ 𝐴)
 
Theoremsupxrunb3 42829* The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
 
Theoremelfzod 42830 Membership in a half-open integer interval. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾 < 𝑁)       (𝜑𝐾 ∈ (𝑀..^𝑁))
 
Theoremfimaxre4 42831* A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
 
Theoremren0 42832 The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
ℝ ≠ ∅
 
Theoremeluzelz2 42833 A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑍 = (ℤ𝑀)       (𝑁𝑍𝑁 ∈ ℤ)
 
Theoremresabs2d 42834 Absorption law for restriction. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐵𝐶)       (𝜑 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐵))
 
Theoremuzid2 42835 Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ (ℤ𝑀))
 
Theoremsupxrleubrnmpt 42836* The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)       (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
 
Theoremuzssre2 42837 An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑍 = (ℤ𝑀)       𝑍 ⊆ ℝ
 
Theoremuzssd 42838 Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
 
Theoremeluzd 42839 Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀𝑁)       (𝜑𝑁𝑍)
 
Theoreminfxrlbrnmpt2 42840* A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷 ∈ ℝ*)    &   (𝑥 = 𝐶𝐵 = 𝐷)       (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐷)
 
Theoremxrre4 42841 An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞)))
 
Theoremuz0 42842 The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
 
Theoremeluzelz2d 42843 A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)       (𝜑𝑁 ∈ ℤ)
 
Theoreminfleinf2 42844* If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   𝑦𝜑    &   (𝜑𝐴 ⊆ ℝ*)    &   (𝜑𝐵 ⊆ ℝ*)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)       (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
 
Theoremunb2ltle 42845* "Unbounded below" expressed with < and with . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
 
Theoremuzidd2 42846 Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)       (𝜑𝑀𝑍)
 
Theoremuzssd2 42847 Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)       (𝜑 → (ℤ𝑁) ⊆ 𝑍)
 
Theoremrexabslelem 42848* An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
 
Theoremrexabsle 42849* An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
 
Theoremallbutfiinf 42850* Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑍 = (ℤ𝑀)    &   𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵    &   (𝜑𝑋𝐴)    &   𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )       (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
 
Theoremsupxrrernmpt 42851* The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)       (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑥𝐴𝐵), ℝ, < ))
 
Theoremsuprleubrnmpt 42852* The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
 
Theoreminfrnmptle 42853* An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)    &   ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)    &   ((𝜑𝑥𝐴) → 𝐵𝐶)       (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ inf(ran (𝑥𝐴𝐶), ℝ*, < ))
 
Theoreminfxrunb3 42854* The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞))
 
Theoremuzn0d 42855 The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)       (𝜑𝑍 ≠ ∅)
 
Theoremuzssd3 42856 Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (ℤ𝑁) ⊆ 𝑍)
 
Theoremrexabsle2 42857* An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)))
 
Theoreminfxrunb3rnmpt 42858* The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   𝑦𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)       (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
 
Theoremsupxrre3rnmpt 42859* The indexed supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝜑    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)       (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦))
 
Theoremuzublem 42860* A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   𝑗𝑋    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑌 ∈ ℝ)    &   𝑊 = sup(ran (𝑗 ∈ (𝑀...𝐾) ↦ 𝐵), ℝ, < )    &   𝑋 = if(𝑊𝑌, 𝑌, 𝑊)    &   (𝜑𝐾𝑍)    &   ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)    &   (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝐵𝑌)       (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
 
Theoremuzub 42861* A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑗𝜑    &   (𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)       (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝐵𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
 
Theoremssrexr 42862 A subset of the reals is a subset of the extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ⊆ ℝ)       (𝜑𝐴 ⊆ ℝ*)
 
Theoremsupxrmnf2 42863 Removing minus infinity from a set does not affect its supremum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < ))
 
Theoremsupxrcli 42864 The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐴 ⊆ ℝ*       sup(𝐴, ℝ*, < ) ∈ ℝ*
 
Theoremuzid3 42865 Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑍 = (ℤ𝑀)       (𝑁𝑍𝑁 ∈ (ℤ𝑁))
 
Theoreminfxrlesupxr 42866 The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr 42879. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ⊆ ℝ*)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → inf(𝐴, ℝ*, < ) ≤ sup(𝐴, ℝ*, < ))
 
Theoremxnegeqd 42867 Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → -𝑒𝐴 = -𝑒𝐵)
 
Theoremxnegrecl 42868 The extended real negative of a real number is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
 
Theoremxnegnegi 42869 Extended real version of negneg 11201. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐴 ∈ ℝ*       -𝑒-𝑒𝐴 = 𝐴
 
Theoremxnegeqi 42870 Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐴 = 𝐵       -𝑒𝐴 = -𝑒𝐵
 
Theoremnfxnegd 42871 Deduction version of nfxneg 42891. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑥𝐴)       (𝜑𝑥-𝑒𝐴)
 
Theoremxnegnegd 42872 Extended real version of negnegd 11253. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ*)       (𝜑 → -𝑒-𝑒𝐴 = 𝐴)
 
Theoremuzred 42873 An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐴𝑍)       (𝜑𝐴 ∈ ℝ)
 
Theoremxnegcli 42874 Closure of extended real negative. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝐴 ∈ ℝ*       -𝑒𝐴 ∈ ℝ*
 
Theoremsupminfrnmpt 42875* The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)       (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
 
Theoreminfxrpnf 42876 Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
 
Theoreminfxrrnmptcl 42877* The infimum of an arbitrary indexed set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)       (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ∈ ℝ*)
 
Theoremleneg2d 42878 Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 ≤ -𝐵𝐵 ≤ -𝐴))
 
Theoremsupxrltinfxr 42879 The supremum of the empty set is strictly smaller than the infimum of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
sup(∅, ℝ*, < ) < inf(∅, ℝ*, < )
 
Theoremmax1d 42880 A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
 
Theoremsupxrleubrnmptf 42881 The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐶    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)       (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
 
Theoremnleltd 42882 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ¬ 𝐵𝐴)       (𝜑𝐴 < 𝐵)
 
Theoremzxrd 42883 An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℤ)       (𝜑𝐴 ∈ ℝ*)
 
Theoreminfxrgelbrnmpt 42884* The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)       (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑥𝐴 𝐶𝐵))
 
Theoremrphalfltd 42885 Half of a positive real is less than the original number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴 / 2) < 𝐴)
 
Theoremuzssz2 42886 An upper set of integers is a subset of all integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑍 = (ℤ𝑀)       𝑍 ⊆ ℤ
 
Theoremleneg3d 42887 Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (-𝐴𝐵 ↔ -𝐵𝐴))
 
Theoremmax2d 42888 A number is less than or equal to the maximum of it and another. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴))
 
Theoremuzn0bi 42889 The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
((ℤ𝑀) ≠ ∅ ↔ 𝑀 ∈ ℤ)
 
Theoremxnegrecl2 42890 If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
((𝐴 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
 
Theoremnfxneg 42891 Bound-variable hypothesis builder for the negative of an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝐴       𝑥-𝑒𝐴
 
Theoremuzxrd 42892 An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐴𝑍)       (𝜑𝐴 ∈ ℝ*)
 
Theoreminfxrpnf2 42893 Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝐴 ⊆ ℝ* → inf((𝐴 ∖ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
 
Theoremsupminfxr 42894* The extended real suprema of a set of reals is the extended real negative of the extended real infima of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ⊆ ℝ)       (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ ∣ -𝑥𝐴}, ℝ*, < ))
 
Theoreminfrpgernmpt 42895* The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
𝑥𝜑    &   (𝜑𝐴 ≠ ∅)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)    &   (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
 
Theoremxnegre 42896 An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ -𝑒𝐴 ∈ ℝ))
 
Theoremxnegrecl2d 42897 If the extended real negative is real, then the number itself is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑 → -𝑒𝐴 ∈ ℝ)       (𝜑𝐴 ∈ ℝ)
 
Theoremuzxr 42898 An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝐴 ∈ (ℤ𝑀) → 𝐴 ∈ ℝ*)
 
Theoremsupminfxr2 42899* The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ⊆ ℝ*)       (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
 
Theoremxnegred 42900 An extended real is real if and only if its extended negative is real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐴 ∈ ℝ*)       (𝜑 → (𝐴 ∈ ℝ ↔ -𝑒𝐴 ∈ ℝ))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >