| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfxor5 | Structured version Visualization version GIF version | ||
| Description: Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
| Ref | Expression |
|---|---|
| dfxor5 | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((𝜑 → ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfxor4 43741 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓))) | |
| 2 | con2b 359 | . 2 ⊢ (((¬ 𝜑 → 𝜓) → ¬ (𝜑 → ¬ 𝜓)) ↔ ((𝜑 → ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓))) | |
| 3 | 1, 2 | xchbinx 334 | 1 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ ((𝜑 → ¬ 𝜓) → ¬ (¬ 𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊻ wxo 1510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-xor 1511 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |