![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege133d | Structured version Visualization version GIF version |
Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 43323. (Contributed by RP, 18-Jul-2020.) |
Ref | Expression |
---|---|
frege133d.f | ⊢ (𝜑 → 𝐹 ∈ V) |
frege133d.xa | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) |
frege133d.xb | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) |
frege133d.fun | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
frege133d | ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege133d.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) | |
2 | frege133d.xb | . . . . 5 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) | |
3 | frege133d.fun | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) | |
4 | funrel 6559 | . . . . . . . 8 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Rel 𝐹) |
6 | reltrclfv 14970 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹)) | |
7 | 1, 5, 6 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → Rel (t+‘𝐹)) |
8 | eliniseg2 6099 | . . . . . 6 ⊢ (Rel (t+‘𝐹) → (𝑋 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵)) |
10 | 2, 9 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (◡(t+‘𝐹) “ {𝐵})) |
11 | frege133d.xa | . . . . 5 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) | |
12 | brrelex2 5723 | . . . . 5 ⊢ ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V) | |
13 | 7, 11, 12 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
14 | un12 4162 | . . . . . 6 ⊢ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ ((◡(t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ ((◡(t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))) |
16 | 1, 15, 3 | frege131d 43091 | . . . 4 ⊢ (𝜑 → (𝐹 “ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) |
17 | 1, 10, 13, 11, 16 | frege83d 43075 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) |
18 | elun 4143 | . . . . 5 ⊢ (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) | |
19 | 18 | orbi2i 909 | . . . 4 ⊢ ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))) |
20 | elun 4143 | . . . 4 ⊢ (𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) | |
21 | 3orass 1087 | . . . 4 ⊢ ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))) | |
22 | 19, 20, 21 | 3bitr4i 303 | . . 3 ⊢ (𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) |
23 | 17, 22 | sylib 217 | . 2 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) |
24 | eliniseg2 6099 | . . . . 5 ⊢ (Rel (t+‘𝐹) → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵)) | |
25 | 7, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵)) |
26 | 25 | biimpd 228 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵)) |
27 | elsni 4640 | . . . 4 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)) |
29 | elrelimasn 6078 | . . . . 5 ⊢ (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴)) | |
30 | 7, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴)) |
31 | 30 | biimpd 228 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴)) |
32 | 26, 28, 31 | 3orim123d 1440 | . 2 ⊢ (𝜑 → ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴))) |
33 | 23, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∪ cun 3941 {csn 4623 class class class wbr 5141 ◡ccnv 5668 “ cima 5672 Rel wrel 5674 Fun wfun 6531 ‘cfv 6537 t+ctcl 14938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-seq 13973 df-trcl 14940 df-relexp 14973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |