| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege133d | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 43987. (Contributed by RP, 18-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege133d.f | ⊢ (𝜑 → 𝐹 ∈ V) |
| frege133d.xa | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) |
| frege133d.xb | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) |
| frege133d.fun | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| frege133d | ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege133d.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) | |
| 2 | frege133d.xb | . . . . 5 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) | |
| 3 | frege133d.fun | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) | |
| 4 | funrel 6558 | . . . . . . . 8 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Rel 𝐹) |
| 6 | reltrclfv 15041 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹)) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → Rel (t+‘𝐹)) |
| 8 | eliniseg2 6098 | . . . . . 6 ⊢ (Rel (t+‘𝐹) → (𝑋 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵)) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵)) |
| 10 | 2, 9 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (◡(t+‘𝐹) “ {𝐵})) |
| 11 | frege133d.xa | . . . . 5 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) | |
| 12 | brrelex2 5713 | . . . . 5 ⊢ ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V) | |
| 13 | 7, 11, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 14 | un12 4153 | . . . . . 6 ⊢ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ ((◡(t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))) | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ ((◡(t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))) |
| 16 | 1, 15, 3 | frege131d 43755 | . . . 4 ⊢ (𝜑 → (𝐹 “ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) |
| 17 | 1, 10, 13, 11, 16 | frege83d 43739 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) |
| 18 | elun 4133 | . . . . 5 ⊢ (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) | |
| 19 | 18 | orbi2i 912 | . . . 4 ⊢ ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))) |
| 20 | elun 4133 | . . . 4 ⊢ (𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) | |
| 21 | 3orass 1089 | . . . 4 ⊢ ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))) | |
| 22 | 19, 20, 21 | 3bitr4i 303 | . . 3 ⊢ (𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) |
| 23 | 17, 22 | sylib 218 | . 2 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) |
| 24 | eliniseg2 6098 | . . . . 5 ⊢ (Rel (t+‘𝐹) → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵)) | |
| 25 | 7, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵)) |
| 26 | 25 | biimpd 229 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵)) |
| 27 | elsni 4623 | . . . 4 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)) |
| 29 | elrelimasn 6078 | . . . . 5 ⊢ (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴)) | |
| 30 | 7, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴)) |
| 31 | 30 | biimpd 229 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴)) |
| 32 | 26, 28, 31 | 3orim123d 1446 | . 2 ⊢ (𝜑 → ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴))) |
| 33 | 23, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 {csn 4606 class class class wbr 5124 ◡ccnv 5658 “ cima 5662 Rel wrel 5664 Fun wfun 6530 ‘cfv 6536 t+ctcl 15009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-seq 14025 df-trcl 15011 df-relexp 15044 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |