Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133d Structured version   Visualization version   GIF version

Theorem frege133d 40867
 Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 41098. (Contributed by RP, 18-Jul-2020.)
Hypotheses
Ref Expression
frege133d.f (𝜑𝐹 ∈ V)
frege133d.xa (𝜑𝑋(t+‘𝐹)𝐴)
frege133d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege133d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege133d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))

Proof of Theorem frege133d
StepHypRef Expression
1 frege133d.f . . . 4 (𝜑𝐹 ∈ V)
2 frege133d.xb . . . . 5 (𝜑𝑋(t+‘𝐹)𝐵)
3 frege133d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
4 funrel 6356 . . . . . . . 8 (Fun 𝐹 → Rel 𝐹)
53, 4syl 17 . . . . . . 7 (𝜑 → Rel 𝐹)
6 reltrclfv 14429 . . . . . . 7 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
71, 5, 6syl2anc 587 . . . . . 6 (𝜑 → Rel (t+‘𝐹))
8 eliniseg2 5945 . . . . . 6 (Rel (t+‘𝐹) → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
102, 9mpbird 260 . . . 4 (𝜑𝑋 ∈ ((t+‘𝐹) “ {𝐵}))
11 frege133d.xa . . . . 5 (𝜑𝑋(t+‘𝐹)𝐴)
12 brrelex2 5579 . . . . 5 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V)
137, 11, 12syl2anc 587 . . . 4 (𝜑𝐴 ∈ V)
14 un12 4074 . . . . . 6 (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))
1514a1i 11 . . . . 5 (𝜑 → (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))))
161, 15, 3frege131d 40866 . . . 4 (𝜑 → (𝐹 “ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
171, 10, 13, 11, 16frege83d 40850 . . 3 (𝜑𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
18 elun 4056 . . . . 5 (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
1918orbi2i 910 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
20 elun 4056 . . . 4 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
21 3orass 1087 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
2219, 20, 213bitr4i 306 . . 3 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
2317, 22sylib 221 . 2 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
24 eliniseg2 5945 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
257, 24syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
2625biimpd 232 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵))
27 elsni 4542 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵))
29 elrelimasn 5929 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
307, 29syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
3130biimpd 232 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴))
3226, 28, 313orim123d 1441 . 2 (𝜑 → ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴)))
3323, 32mpd 15 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∨ wo 844   ∨ w3o 1083   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ∪ cun 3858  {csn 4525   class class class wbr 5035  ◡ccnv 5526   “ cima 5530  Rel wrel 5532  Fun wfun 6333  ‘cfv 6339  t+ctcl 14397 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-seq 13424  df-trcl 14399  df-relexp 14432 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator