![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege133d | Structured version Visualization version GIF version |
Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 39129. (Contributed by RP, 18-Jul-2020.) |
Ref | Expression |
---|---|
frege133d.f | ⊢ (𝜑 → 𝐹 ∈ V) |
frege133d.xa | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) |
frege133d.xb | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) |
frege133d.fun | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
frege133d | ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege133d.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) | |
2 | frege133d.xb | . . . . 5 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) | |
3 | frege133d.fun | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) | |
4 | funrel 6144 | . . . . . . . 8 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Rel 𝐹) |
6 | reltrclfv 14142 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹)) | |
7 | 1, 5, 6 | syl2anc 579 | . . . . . 6 ⊢ (𝜑 → Rel (t+‘𝐹)) |
8 | eliniseg2 5750 | . . . . . 6 ⊢ (Rel (t+‘𝐹) → (𝑋 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵)) |
10 | 2, 9 | mpbird 249 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (◡(t+‘𝐹) “ {𝐵})) |
11 | frege133d.xa | . . . . 5 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) | |
12 | brrelex2 5395 | . . . . 5 ⊢ ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V) | |
13 | 7, 11, 12 | syl2anc 579 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
14 | un12 4000 | . . . . . 6 ⊢ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ ((◡(t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ ((◡(t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))) |
16 | 1, 15, 3 | frege131d 38896 | . . . 4 ⊢ (𝜑 → (𝐹 “ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) |
17 | 1, 10, 13, 11, 16 | frege83d 38880 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) |
18 | elun 3982 | . . . . 5 ⊢ (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) | |
19 | 18 | orbi2i 941 | . . . 4 ⊢ ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))) |
20 | elun 3982 | . . . 4 ⊢ (𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) | |
21 | 3orass 1114 | . . . 4 ⊢ ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))) | |
22 | 19, 20, 21 | 3bitr4i 295 | . . 3 ⊢ (𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) |
23 | 17, 22 | sylib 210 | . 2 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) |
24 | eliniseg2 5750 | . . . . 5 ⊢ (Rel (t+‘𝐹) → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵)) | |
25 | 7, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵)) |
26 | 25 | biimpd 221 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵)) |
27 | elsni 4416 | . . . 4 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)) |
29 | elrelimasn 5734 | . . . . 5 ⊢ (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴)) | |
30 | 7, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴)) |
31 | 30 | biimpd 221 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴)) |
32 | 26, 28, 31 | 3orim123d 1572 | . 2 ⊢ (𝜑 → ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴))) |
33 | 23, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∨ wo 878 ∨ w3o 1110 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ∪ cun 3796 {csn 4399 class class class wbr 4875 ◡ccnv 5345 “ cima 5349 Rel wrel 5351 Fun wfun 6121 ‘cfv 6127 t+ctcl 14110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-n0 11626 df-z 11712 df-uz 11976 df-fz 12627 df-seq 13103 df-trcl 14112 df-relexp 14145 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |