Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133d Structured version   Visualization version   GIF version

Theorem frege133d 43092
Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 43323. (Contributed by RP, 18-Jul-2020.)
Hypotheses
Ref Expression
frege133d.f (𝜑𝐹 ∈ V)
frege133d.xa (𝜑𝑋(t+‘𝐹)𝐴)
frege133d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege133d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege133d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))

Proof of Theorem frege133d
StepHypRef Expression
1 frege133d.f . . . 4 (𝜑𝐹 ∈ V)
2 frege133d.xb . . . . 5 (𝜑𝑋(t+‘𝐹)𝐵)
3 frege133d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
4 funrel 6559 . . . . . . . 8 (Fun 𝐹 → Rel 𝐹)
53, 4syl 17 . . . . . . 7 (𝜑 → Rel 𝐹)
6 reltrclfv 14970 . . . . . . 7 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
71, 5, 6syl2anc 583 . . . . . 6 (𝜑 → Rel (t+‘𝐹))
8 eliniseg2 6099 . . . . . 6 (Rel (t+‘𝐹) → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
102, 9mpbird 257 . . . 4 (𝜑𝑋 ∈ ((t+‘𝐹) “ {𝐵}))
11 frege133d.xa . . . . 5 (𝜑𝑋(t+‘𝐹)𝐴)
12 brrelex2 5723 . . . . 5 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V)
137, 11, 12syl2anc 583 . . . 4 (𝜑𝐴 ∈ V)
14 un12 4162 . . . . . 6 (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))
1514a1i 11 . . . . 5 (𝜑 → (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))))
161, 15, 3frege131d 43091 . . . 4 (𝜑 → (𝐹 “ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
171, 10, 13, 11, 16frege83d 43075 . . 3 (𝜑𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
18 elun 4143 . . . . 5 (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
1918orbi2i 909 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
20 elun 4143 . . . 4 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
21 3orass 1087 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
2219, 20, 213bitr4i 303 . . 3 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
2317, 22sylib 217 . 2 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
24 eliniseg2 6099 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
257, 24syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
2625biimpd 228 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵))
27 elsni 4640 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵))
29 elrelimasn 6078 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
307, 29syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
3130biimpd 228 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴))
3226, 28, 313orim123d 1440 . 2 (𝜑 → ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴)))
3323, 32mpd 15 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844  w3o 1083   = wceq 1533  wcel 2098  Vcvv 3468  cun 3941  {csn 4623   class class class wbr 5141  ccnv 5668  cima 5672  Rel wrel 5674  Fun wfun 6531  cfv 6537  t+ctcl 14938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-seq 13973  df-trcl 14940  df-relexp 14973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator