Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege133d | Structured version Visualization version GIF version |
Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 41832. (Contributed by RP, 18-Jul-2020.) |
Ref | Expression |
---|---|
frege133d.f | ⊢ (𝜑 → 𝐹 ∈ V) |
frege133d.xa | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) |
frege133d.xb | ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) |
frege133d.fun | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
frege133d | ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege133d.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) | |
2 | frege133d.xb | . . . . 5 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) | |
3 | frege133d.fun | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) | |
4 | funrel 6485 | . . . . . . . 8 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → Rel 𝐹) |
6 | reltrclfv 14797 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹)) | |
7 | 1, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → Rel (t+‘𝐹)) |
8 | eliniseg2 6029 | . . . . . 6 ⊢ (Rel (t+‘𝐹) → (𝑋 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵)) |
10 | 2, 9 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (◡(t+‘𝐹) “ {𝐵})) |
11 | frege133d.xa | . . . . 5 ⊢ (𝜑 → 𝑋(t+‘𝐹)𝐴) | |
12 | brrelex2 5657 | . . . . 5 ⊢ ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V) | |
13 | 7, 11, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
14 | un12 4111 | . . . . . 6 ⊢ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ ((◡(t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ ((◡(t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))) |
16 | 1, 15, 3 | frege131d 41600 | . . . 4 ⊢ (𝜑 → (𝐹 “ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) |
17 | 1, 10, 13, 11, 16 | frege83d 41584 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) |
18 | elun 4093 | . . . . 5 ⊢ (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) | |
19 | 18 | orbi2i 910 | . . . 4 ⊢ ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))) |
20 | elun 4093 | . . . 4 ⊢ (𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) | |
21 | 3orass 1089 | . . . 4 ⊢ ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))) | |
22 | 19, 20, 21 | 3bitr4i 302 | . . 3 ⊢ (𝐴 ∈ ((◡(t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) |
23 | 17, 22 | sylib 217 | . 2 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))) |
24 | eliniseg2 6029 | . . . . 5 ⊢ (Rel (t+‘𝐹) → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵)) | |
25 | 7, 24 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵)) |
26 | 25 | biimpd 228 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵)) |
27 | elsni 4586 | . . . 4 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)) |
29 | elrelimasn 6008 | . . . . 5 ⊢ (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴)) | |
30 | 7, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴)) |
31 | 30 | biimpd 228 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴)) |
32 | 26, 28, 31 | 3orim123d 1443 | . 2 ⊢ (𝜑 → ((𝐴 ∈ (◡(t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴))) |
33 | 23, 32 | mpd 15 | 1 ⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝐹)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cun 3894 {csn 4569 class class class wbr 5085 ◡ccnv 5604 “ cima 5608 Rel wrel 5610 Fun wfun 6457 ‘cfv 6463 t+ctcl 14765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-seq 13792 df-trcl 14767 df-relexp 14800 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |