Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133d Structured version   Visualization version   GIF version

Theorem frege133d 40466
Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 40697. (Contributed by RP, 18-Jul-2020.)
Hypotheses
Ref Expression
frege133d.f (𝜑𝐹 ∈ V)
frege133d.xa (𝜑𝑋(t+‘𝐹)𝐴)
frege133d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege133d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege133d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))

Proof of Theorem frege133d
StepHypRef Expression
1 frege133d.f . . . 4 (𝜑𝐹 ∈ V)
2 frege133d.xb . . . . 5 (𝜑𝑋(t+‘𝐹)𝐵)
3 frege133d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
4 funrel 6341 . . . . . . . 8 (Fun 𝐹 → Rel 𝐹)
53, 4syl 17 . . . . . . 7 (𝜑 → Rel 𝐹)
6 reltrclfv 14368 . . . . . . 7 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
71, 5, 6syl2anc 587 . . . . . 6 (𝜑 → Rel (t+‘𝐹))
8 eliniseg2 5936 . . . . . 6 (Rel (t+‘𝐹) → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
102, 9mpbird 260 . . . 4 (𝜑𝑋 ∈ ((t+‘𝐹) “ {𝐵}))
11 frege133d.xa . . . . 5 (𝜑𝑋(t+‘𝐹)𝐴)
12 brrelex2 5570 . . . . 5 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V)
137, 11, 12syl2anc 587 . . . 4 (𝜑𝐴 ∈ V)
14 un12 4094 . . . . . 6 (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))
1514a1i 11 . . . . 5 (𝜑 → (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))))
161, 15, 3frege131d 40465 . . . 4 (𝜑 → (𝐹 “ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
171, 10, 13, 11, 16frege83d 40449 . . 3 (𝜑𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
18 elun 4076 . . . . 5 (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
1918orbi2i 910 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
20 elun 4076 . . . 4 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
21 3orass 1087 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
2219, 20, 213bitr4i 306 . . 3 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
2317, 22sylib 221 . 2 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
24 eliniseg2 5936 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
257, 24syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
2625biimpd 232 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵))
27 elsni 4542 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵))
29 elrelimasn 5920 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
307, 29syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
3130biimpd 232 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴))
3226, 28, 313orim123d 1441 . 2 (𝜑 → ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴)))
3323, 32mpd 15 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844  w3o 1083   = wceq 1538  wcel 2111  Vcvv 3441  cun 3879  {csn 4525   class class class wbr 5030  ccnv 5518  cima 5522  Rel wrel 5524  Fun wfun 6318  cfv 6324  t+ctcl 14336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-trcl 14338  df-relexp 14371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator