Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege133d Structured version   Visualization version   GIF version

Theorem frege133d 39975
Description: If 𝐹 is a function and 𝐴 and 𝐵 both follow 𝑋 in the transitive closure of 𝐹, then (for distinct 𝐴 and 𝐵) either 𝐴 follows 𝐵 or 𝐵 follows 𝐴 in the transitive closure of 𝐹 (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 40207. (Contributed by RP, 18-Jul-2020.)
Hypotheses
Ref Expression
frege133d.f (𝜑𝐹 ∈ V)
frege133d.xa (𝜑𝑋(t+‘𝐹)𝐴)
frege133d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege133d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege133d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))

Proof of Theorem frege133d
StepHypRef Expression
1 frege133d.f . . . 4 (𝜑𝐹 ∈ V)
2 frege133d.xb . . . . 5 (𝜑𝑋(t+‘𝐹)𝐵)
3 frege133d.fun . . . . . . . 8 (𝜑 → Fun 𝐹)
4 funrel 6369 . . . . . . . 8 (Fun 𝐹 → Rel 𝐹)
53, 4syl 17 . . . . . . 7 (𝜑 → Rel 𝐹)
6 reltrclfv 14367 . . . . . . 7 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
71, 5, 6syl2anc 584 . . . . . 6 (𝜑 → Rel (t+‘𝐹))
8 eliniseg2 5967 . . . . . 6 (Rel (t+‘𝐹) → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (𝑋 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝑋(t+‘𝐹)𝐵))
102, 9mpbird 258 . . . 4 (𝜑𝑋 ∈ ((t+‘𝐹) “ {𝐵}))
11 frege133d.xa . . . . 5 (𝜑𝑋(t+‘𝐹)𝐴)
12 brrelex2 5605 . . . . 5 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐴) → 𝐴 ∈ V)
137, 11, 12syl2anc 584 . . . 4 (𝜑𝐴 ∈ V)
14 un12 4147 . . . . . 6 (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵})))
1514a1i 11 . . . . 5 (𝜑 → (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) = ({𝐵} ∪ (((t+‘𝐹) “ {𝐵}) ∪ ((t+‘𝐹) “ {𝐵}))))
161, 15, 3frege131d 39974 . . . 4 (𝜑 → (𝐹 “ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})))) ⊆ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
171, 10, 13, 11, 16frege83d 39958 . . 3 (𝜑𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
18 elun 4129 . . . . 5 (𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
1918orbi2i 908 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
20 elun 4129 . . . 4 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))))
21 3orass 1084 . . . 4 ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ (𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵}))))
2219, 20, 213bitr4i 304 . . 3 (𝐴 ∈ (((t+‘𝐹) “ {𝐵}) ∪ ({𝐵} ∪ ((t+‘𝐹) “ {𝐵}))) ↔ (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
2317, 22sylib 219 . 2 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})))
24 eliniseg2 5967 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
257, 24syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐴(t+‘𝐹)𝐵))
2625biimpd 230 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐴(t+‘𝐹)𝐵))
27 elsni 4581 . . . 4 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2827a1i 11 . . 3 (𝜑 → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵))
29 elrelimasn 5951 . . . . 5 (Rel (t+‘𝐹) → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
307, 29syl 17 . . . 4 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ↔ 𝐵(t+‘𝐹)𝐴))
3130biimpd 230 . . 3 (𝜑 → (𝐴 ∈ ((t+‘𝐹) “ {𝐵}) → 𝐵(t+‘𝐹)𝐴))
3226, 28, 313orim123d 1437 . 2 (𝜑 → ((𝐴 ∈ ((t+‘𝐹) “ {𝐵}) ∨ 𝐴 ∈ {𝐵} ∨ 𝐴 ∈ ((t+‘𝐹) “ {𝐵})) → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴)))
3323, 32mpd 15 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵𝐵(t+‘𝐹)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wo 843  w3o 1080   = wceq 1530  wcel 2107  Vcvv 3500  cun 3938  {csn 4564   class class class wbr 5063  ccnv 5553  cima 5557  Rel wrel 5559  Fun wfun 6346  cfv 6352  t+ctcl 14335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-seq 13360  df-trcl 14337  df-relexp 14370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator