Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
5 | 1, 1, 2, 4 | e111 42294 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42190 |
This theorem is referenced by: e11an 42309 e01 42311 e10 42314 elex2VD 42458 elex22VD 42459 eqsbc2VD 42460 tpid3gVD 42462 3ornot23VD 42467 orbi1rVD 42468 3orbi123VD 42470 sbc3orgVD 42471 ordelordALTVD 42487 sbcim2gVD 42495 trsbcVD 42497 undif3VD 42502 sbcssgVD 42503 csbingVD 42504 onfrALTVD 42511 csbeq2gVD 42512 csbsngVD 42513 csbxpgVD 42514 csbresgVD 42515 csbrngVD 42516 csbima12gALTVD 42517 csbunigVD 42518 csbfv12gALTVD 42519 19.41rgVD 42522 2pm13.193VD 42523 hbimpgVD 42524 ax6e2eqVD 42527 2uasbanhVD 42531 notnotrALTVD 42535 |
Copyright terms: Public domain | W3C validator |