Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
5 | 1, 1, 2, 4 | e111 42275 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42171 |
This theorem is referenced by: e11an 42290 e01 42292 e10 42295 elex2VD 42439 elex22VD 42440 eqsbc2VD 42441 tpid3gVD 42443 3ornot23VD 42448 orbi1rVD 42449 3orbi123VD 42451 sbc3orgVD 42452 ordelordALTVD 42468 sbcim2gVD 42476 trsbcVD 42478 undif3VD 42483 sbcssgVD 42484 csbingVD 42485 onfrALTVD 42492 csbeq2gVD 42493 csbsngVD 42494 csbxpgVD 42495 csbresgVD 42496 csbrngVD 42497 csbima12gALTVD 42498 csbunigVD 42499 csbfv12gALTVD 42500 19.41rgVD 42503 2pm13.193VD 42504 hbimpgVD 42505 ax6e2eqVD 42508 2uasbanhVD 42512 notnotrALTVD 42516 |
Copyright terms: Public domain | W3C validator |