|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) | 
| e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) | 
| e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) | 
| Ref | Expression | 
|---|---|
| e11 | ⊢ ( 𝜑 ▶ 𝜃 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
| 3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) | 
| 5 | 1, 1, 2, 4 | e111 44699 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ( wvd1 44594 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-vd1 44595 | 
| This theorem is referenced by: e11an 44714 e01 44716 e10 44719 elex2VD 44863 elex22VD 44864 eqsbc2VD 44865 tpid3gVD 44867 3ornot23VD 44872 orbi1rVD 44873 3orbi123VD 44875 sbc3orgVD 44876 ordelordALTVD 44892 sbcim2gVD 44900 trsbcVD 44902 undif3VD 44907 sbcssgVD 44908 csbingVD 44909 onfrALTVD 44916 csbeq2gVD 44917 csbsngVD 44918 csbxpgVD 44919 csbresgVD 44920 csbrngVD 44921 csbima12gALTVD 44922 csbunigVD 44923 csbfv12gALTVD 44924 19.41rgVD 44927 2pm13.193VD 44928 hbimpgVD 44929 ax6e2eqVD 44932 2uasbanhVD 44936 notnotrALTVD 44940 | 
| Copyright terms: Public domain | W3C validator |