| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
| e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
| 3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
| 5 | 1, 1, 2, 4 | e111 44664 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44560 |
| This theorem is referenced by: e11an 44679 e01 44681 e10 44684 elex2VD 44827 elex22VD 44828 eqsbc2VD 44829 tpid3gVD 44831 3ornot23VD 44836 orbi1rVD 44837 3orbi123VD 44839 sbc3orgVD 44840 ordelordALTVD 44856 sbcim2gVD 44864 trsbcVD 44866 undif3VD 44871 sbcssgVD 44872 csbingVD 44873 onfrALTVD 44880 csbeq2gVD 44881 csbsngVD 44882 csbxpgVD 44883 csbresgVD 44884 csbrngVD 44885 csbima12gALTVD 44886 csbunigVD 44887 csbfv12gALTVD 44888 19.41rgVD 44891 2pm13.193VD 44892 hbimpgVD 44893 ax6e2eqVD 44896 2uasbanhVD 44900 notnotrALTVD 44904 |
| Copyright terms: Public domain | W3C validator |