| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
| e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
| 3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
| 5 | 1, 1, 2, 4 | e111 44666 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44562 |
| This theorem is referenced by: e11an 44681 e01 44683 e10 44686 elex2VD 44829 elex22VD 44830 eqsbc2VD 44831 tpid3gVD 44833 3ornot23VD 44838 orbi1rVD 44839 3orbi123VD 44841 sbc3orgVD 44842 ordelordALTVD 44858 sbcim2gVD 44866 trsbcVD 44868 undif3VD 44873 sbcssgVD 44874 csbingVD 44875 onfrALTVD 44882 csbeq2gVD 44883 csbsngVD 44884 csbxpgVD 44885 csbresgVD 44886 csbrngVD 44887 csbima12gALTVD 44888 csbunigVD 44889 csbfv12gALTVD 44890 19.41rgVD 44893 2pm13.193VD 44894 hbimpgVD 44895 ax6e2eqVD 44898 2uasbanhVD 44902 notnotrALTVD 44906 |
| Copyright terms: Public domain | W3C validator |