| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
| e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
| 3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
| 5 | 1, 1, 2, 4 | e111 44713 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44609 |
| This theorem is referenced by: e11an 44728 e01 44730 e10 44733 elex2VD 44876 elex22VD 44877 eqsbc2VD 44878 tpid3gVD 44880 3ornot23VD 44885 orbi1rVD 44886 3orbi123VD 44888 sbc3orgVD 44889 ordelordALTVD 44905 sbcim2gVD 44913 trsbcVD 44915 undif3VD 44920 sbcssgVD 44921 csbingVD 44922 onfrALTVD 44929 csbeq2gVD 44930 csbsngVD 44931 csbxpgVD 44932 csbresgVD 44933 csbrngVD 44934 csbima12gALTVD 44935 csbunigVD 44936 csbfv12gALTVD 44937 19.41rgVD 44940 2pm13.193VD 44941 hbimpgVD 44942 ax6e2eqVD 44945 2uasbanhVD 44949 notnotrALTVD 44953 |
| Copyright terms: Public domain | W3C validator |