| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
| e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
| 3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
| 5 | 1, 1, 2, 4 | e111 44794 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44690 |
| This theorem is referenced by: e11an 44809 e01 44811 e10 44814 elex2VD 44957 elex22VD 44958 eqsbc2VD 44959 tpid3gVD 44961 3ornot23VD 44966 orbi1rVD 44967 3orbi123VD 44969 sbc3orgVD 44970 ordelordALTVD 44986 sbcim2gVD 44994 trsbcVD 44996 undif3VD 45001 sbcssgVD 45002 csbingVD 45003 onfrALTVD 45010 csbeq2gVD 45011 csbsngVD 45012 csbxpgVD 45013 csbresgVD 45014 csbrngVD 45015 csbima12gALTVD 45016 csbunigVD 45017 csbfv12gALTVD 45018 19.41rgVD 45021 2pm13.193VD 45022 hbimpgVD 45023 ax6e2eqVD 45026 2uasbanhVD 45030 notnotrALTVD 45034 |
| Copyright terms: Public domain | W3C validator |