| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
| e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
| 3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
| 5 | 1, 1, 2, 4 | e111 44651 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44547 |
| This theorem is referenced by: e11an 44666 e01 44668 e10 44671 elex2VD 44815 elex22VD 44816 eqsbc2VD 44817 tpid3gVD 44819 3ornot23VD 44824 orbi1rVD 44825 3orbi123VD 44827 sbc3orgVD 44828 ordelordALTVD 44844 sbcim2gVD 44852 trsbcVD 44854 undif3VD 44859 sbcssgVD 44860 csbingVD 44861 onfrALTVD 44868 csbeq2gVD 44869 csbsngVD 44870 csbxpgVD 44871 csbresgVD 44872 csbrngVD 44873 csbima12gALTVD 44874 csbunigVD 44875 csbfv12gALTVD 44876 19.41rgVD 44879 2pm13.193VD 44880 hbimpgVD 44881 ax6e2eqVD 44884 2uasbanhVD 44888 notnotrALTVD 44892 |
| Copyright terms: Public domain | W3C validator |