| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
| e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
| e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
| 3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
| 5 | 1, 1, 2, 4 | e111 44651 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd1 44546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-vd1 44547 |
| This theorem is referenced by: e11an 44666 e01 44668 e10 44671 elex2VD 44814 elex22VD 44815 eqsbc2VD 44816 tpid3gVD 44818 3ornot23VD 44823 orbi1rVD 44824 3orbi123VD 44826 sbc3orgVD 44827 ordelordALTVD 44843 sbcim2gVD 44851 trsbcVD 44853 undif3VD 44858 sbcssgVD 44859 csbingVD 44860 onfrALTVD 44867 csbeq2gVD 44868 csbsngVD 44869 csbxpgVD 44870 csbresgVD 44871 csbrngVD 44872 csbima12gALTVD 44873 csbunigVD 44874 csbfv12gALTVD 44875 19.41rgVD 44878 2pm13.193VD 44879 hbimpgVD 44880 ax6e2eqVD 44883 2uasbanhVD 44887 notnotrALTVD 44891 |
| Copyright terms: Public domain | W3C validator |