![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
5 | 1, 1, 2, 4 | e111 44672 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-vd1 44568 |
This theorem is referenced by: e11an 44687 e01 44689 e10 44692 elex2VD 44836 elex22VD 44837 eqsbc2VD 44838 tpid3gVD 44840 3ornot23VD 44845 orbi1rVD 44846 3orbi123VD 44848 sbc3orgVD 44849 ordelordALTVD 44865 sbcim2gVD 44873 trsbcVD 44875 undif3VD 44880 sbcssgVD 44881 csbingVD 44882 onfrALTVD 44889 csbeq2gVD 44890 csbsngVD 44891 csbxpgVD 44892 csbresgVD 44893 csbrngVD 44894 csbima12gALTVD 44895 csbunigVD 44896 csbfv12gALTVD 44897 19.41rgVD 44900 2pm13.193VD 44901 hbimpgVD 44902 ax6e2eqVD 44905 2uasbanhVD 44909 notnotrALTVD 44913 |
Copyright terms: Public domain | W3C validator |