![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
5 | 1, 1, 2, 4 | e111 44645 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 44540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-vd1 44541 |
This theorem is referenced by: e11an 44660 e01 44662 e10 44665 elex2VD 44809 elex22VD 44810 eqsbc2VD 44811 tpid3gVD 44813 3ornot23VD 44818 orbi1rVD 44819 3orbi123VD 44821 sbc3orgVD 44822 ordelordALTVD 44838 sbcim2gVD 44846 trsbcVD 44848 undif3VD 44853 sbcssgVD 44854 csbingVD 44855 onfrALTVD 44862 csbeq2gVD 44863 csbsngVD 44864 csbxpgVD 44865 csbresgVD 44866 csbrngVD 44867 csbima12gALTVD 44868 csbunigVD 44869 csbfv12gALTVD 44870 19.41rgVD 44873 2pm13.193VD 44874 hbimpgVD 44875 ax6e2eqVD 44878 2uasbanhVD 44882 notnotrALTVD 44886 |
Copyright terms: Public domain | W3C validator |