Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e11 | Structured version Visualization version GIF version |
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
e11.2 | ⊢ ( 𝜑 ▶ 𝜒 ) |
e11.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
e11 | ⊢ ( 𝜑 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | e11.1 | . 2 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | e11.2 | . 2 ⊢ ( 𝜑 ▶ 𝜒 ) | |
3 | e11.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜓 → (𝜓 → (𝜒 → 𝜃))) |
5 | 1, 1, 2, 4 | e111 42183 | 1 ⊢ ( 𝜑 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 42078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-vd1 42079 |
This theorem is referenced by: e11an 42198 e01 42200 e10 42203 elex2VD 42347 elex22VD 42348 eqsbc2VD 42349 tpid3gVD 42351 3ornot23VD 42356 orbi1rVD 42357 3orbi123VD 42359 sbc3orgVD 42360 ordelordALTVD 42376 sbcim2gVD 42384 trsbcVD 42386 undif3VD 42391 sbcssgVD 42392 csbingVD 42393 onfrALTVD 42400 csbeq2gVD 42401 csbsngVD 42402 csbxpgVD 42403 csbresgVD 42404 csbrngVD 42405 csbima12gALTVD 42406 csbunigVD 42407 csbfv12gALTVD 42408 19.41rgVD 42411 2pm13.193VD 42412 hbimpgVD 42413 ax6e2eqVD 42416 2uasbanhVD 42420 notnotrALTVD 42424 |
Copyright terms: Public domain | W3C validator |