Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALTVD Structured version   Visualization version   GIF version

Theorem ordelordALTVD 41275
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 6206 using the Axiom of Regularity indirectly through dford2 9076. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 40945 is ordelordALTVD 41275 without virtual deductions and was automatically derived from ordelordALTVD 41275 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command.
1:: (   (Ord 𝐴𝐵𝐴)   ▶   (Ord 𝐴 𝐵𝐴)   )
2:1: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐴   )
3:1: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
4:2: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐴   )
5:2: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
6:4,3: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
7:6,6,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐵 𝑦𝐵(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
8:: ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
9:8: 𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
10:9: 𝑦𝐴((𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
11:10: (∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
12:11: 𝑥(∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
13:12: 𝑥𝐴(∀𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
14:13: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦))
15:14,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
16:4,15,3: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐵   )
17:16,7: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐵   )
qed:17: ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALTVD ((Ord 𝐴𝐵𝐴) → Ord 𝐵)

Proof of Theorem ordelordALTVD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 40982 . . . . . 6 (   (Ord 𝐴𝐵𝐴)   ▶   (Ord 𝐴𝐵𝐴)   )
2 simpl 485 . . . . . 6 ((Ord 𝐴𝐵𝐴) → Ord 𝐴)
31, 2e1a 41035 . . . . 5 (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐴   )
4 ordtr 6198 . . . . 5 (Ord 𝐴 → Tr 𝐴)
53, 4e1a 41035 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐴   )
6 dford2 9076 . . . . . . 7 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
76simprbi 499 . . . . . 6 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
83, 7e1a 41035 . . . . 5 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
9 3orcomb 1089 . . . . . . . . . . 11 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
109ax-gen 1795 . . . . . . . . . 10 𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
11 alral 3153 . . . . . . . . . 10 (∀𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ∀𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1210, 11e0a 41180 . . . . . . . . 9 𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
13 ralbi 3166 . . . . . . . . 9 (∀𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1412, 13e0a 41180 . . . . . . . 8 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
1514ax-gen 1795 . . . . . . 7 𝑥(∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
16 alral 3153 . . . . . . 7 (∀𝑥(∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ∀𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1715, 16e0a 41180 . . . . . 6 𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
18 ralbi 3166 . . . . . 6 (∀𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1917, 18e0a 41180 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
208, 19e1bi 41037 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
21 simpr 487 . . . . 5 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
221, 21e1a 41035 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
23 tratrb 40944 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
24233exp 1114 . . . 4 (Tr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝐵𝐴 → Tr 𝐵)))
255, 20, 22, 24e111 41082 . . 3 (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐵   )
26 trss 5174 . . . . 5 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
275, 22, 26e11 41096 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
28 ssralv2 40939 . . . . 5 ((𝐵𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2928ex 415 . . . 4 (𝐵𝐴 → (𝐵𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))))
3027, 27, 8, 29e111 41082 . . 3 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
31 dford2 9076 . . . 4 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
3231simplbi2 503 . . 3 (Tr 𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → Ord 𝐵))
3325, 30, 32e11 41096 . 2 (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐵   )
3433in1 40979 1 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1081  wal 1534   = wceq 1536  wcel 2113  wral 3137  wss 3929  Tr wtr 5165  Ord word 6183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323  ax-un 7454  ax-reg 9049
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-tr 5166  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-vd1 40978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator