Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALTVD Structured version   Visualization version   GIF version

Theorem ordelordALTVD 43139
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 6339 using the Axiom of Regularity indirectly through dford2 9556. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 42809 is ordelordALTVD 43139 without virtual deductions and was automatically derived from ordelordALTVD 43139 using the tools program translate..without..overwriting.cmd and the Metamath program "MM-PA> MINIMIZE_WITH *" command.
1:: (   (Ord 𝐴𝐵𝐴)   ▶   (Ord 𝐴 𝐵𝐴)   )
2:1: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐴   )
3:1: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
4:2: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐴   )
5:2: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
6:4,3: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
7:6,6,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐵 𝑦𝐵(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
8:: ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
9:8: 𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
10:9: 𝑦𝐴((𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
11:10: (∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
12:11: 𝑥(∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
13:12: 𝑥𝐴(∀𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
14:13: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦))
15:14,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
16:4,15,3: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐵   )
17:16,7: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐵   )
qed:17: ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALTVD ((Ord 𝐴𝐵𝐴) → Ord 𝐵)

Proof of Theorem ordelordALTVD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 42846 . . . . . 6 (   (Ord 𝐴𝐵𝐴)   ▶   (Ord 𝐴𝐵𝐴)   )
2 simpl 483 . . . . . 6 ((Ord 𝐴𝐵𝐴) → Ord 𝐴)
31, 2e1a 42899 . . . . 5 (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐴   )
4 ordtr 6331 . . . . 5 (Ord 𝐴 → Tr 𝐴)
53, 4e1a 42899 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐴   )
6 dford2 9556 . . . . . . 7 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
76simprbi 497 . . . . . 6 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
83, 7e1a 42899 . . . . 5 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
9 3orcomb 1094 . . . . . . . . . . 11 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
109ax-gen 1797 . . . . . . . . . 10 𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
11 alral 3078 . . . . . . . . . 10 (∀𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ∀𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1210, 11e0a 43044 . . . . . . . . 9 𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
13 ralbi 3106 . . . . . . . . 9 (∀𝑦𝐴 ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1412, 13e0a 43044 . . . . . . . 8 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
1514ax-gen 1797 . . . . . . 7 𝑥(∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
16 alral 3078 . . . . . . 7 (∀𝑥(∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → ∀𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1715, 16e0a 43044 . . . . . 6 𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
18 ralbi 3106 . . . . . 6 (∀𝑥𝐴 (∀𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)))
1917, 18e0a 43044 . . . . 5 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
208, 19e1bi 42901 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
21 simpr 485 . . . . 5 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
221, 21e1a 42899 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
23 tratrb 42808 . . . . 5 ((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
24233exp 1119 . . . 4 (Tr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) → (𝐵𝐴 → Tr 𝐵)))
255, 20, 22, 24e111 42946 . . 3 (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐵   )
26 trss 5233 . . . . 5 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
275, 22, 26e11 42960 . . . 4 (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
28 ssralv2 42803 . . . . 5 ((𝐵𝐴𝐵𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2928ex 413 . . . 4 (𝐵𝐴 → (𝐵𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥))))
3027, 27, 8, 29e111 42946 . . 3 (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
31 dford2 9556 . . . 4 (Ord 𝐵 ↔ (Tr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
3231simplbi2 501 . . 3 (Tr 𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → Ord 𝐵))
3325, 30, 32e11 42960 . 2 (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐵   )
3433in1 42843 1 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1086  wal 1539   = wceq 1541  wcel 2106  wral 3064  wss 3910  Tr wtr 5222  Ord word 6316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672  ax-reg 9528
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-tr 5223  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-ord 6320  df-vd1 42842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator