Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e32 Structured version   Visualization version   GIF version

Theorem e32 42267
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e32.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
e32.2 (   𝜑   ,   𝜓   ▶   𝜏   )
e32.3 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
e32 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )

Proof of Theorem e32
StepHypRef Expression
1 e32.1 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
2 e32.2 . . 3 (   𝜑   ,   𝜓   ▶   𝜏   )
32vd23 42111 . 2 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜏   )
4 e32.3 . 2 (𝜃 → (𝜏𝜂))
51, 3, 4e33 42243 1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 42086  (   wvd3 42096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-vd2 42087  df-vd3 42099
This theorem is referenced by:  e32an  42269  exbirVD  42362  exbiriVD  42363  ssralv2VD  42375  trintALTVD  42389
  Copyright terms: Public domain W3C validator