Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exbiriVD Structured version   Visualization version   GIF version

Theorem exbiriVD 44843
Description: Virtual deduction proof of exbiri 810. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: ((𝜑𝜓) → (𝜒𝜃))
2:: (   𝜑   ▶   𝜑   )
3:: (   𝜑   ,   𝜓   ▶   𝜓   )
4:: (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   )
5:2,1,?: e10 44684 (   𝜑   ▶   (𝜓 → (𝜒𝜃))   )
6:3,5,?: e21 44719 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
7:4,6,?: e32 44747 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
8:7: (   𝜑   ,   𝜓   ▶   (𝜃𝜒)   )
9:8: (   𝜑   ▶   (𝜓 → (𝜃𝜒))   )
qed:9: (𝜑 → (𝜓 → (𝜃𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
exbiriVD.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
exbiriVD (𝜑 → (𝜓 → (𝜃𝜒)))

Proof of Theorem exbiriVD
StepHypRef Expression
1 idn3 44605 . . . . 5 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   )
2 idn2 44603 . . . . . 6 (   𝜑   ,   𝜓   ▶   𝜓   )
3 idn1 44564 . . . . . . 7 (   𝜑   ▶   𝜑   )
4 exbiriVD.1 . . . . . . 7 ((𝜑𝜓) → (𝜒𝜃))
5 pm3.3 448 . . . . . . . 8 (((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜒𝜃))))
65com12 32 . . . . . . 7 (𝜑 → (((𝜑𝜓) → (𝜒𝜃)) → (𝜓 → (𝜒𝜃))))
73, 4, 6e10 44684 . . . . . 6 (   𝜑   ▶   (𝜓 → (𝜒𝜃))   )
8 pm2.27 42 . . . . . 6 (𝜓 → ((𝜓 → (𝜒𝜃)) → (𝜒𝜃)))
92, 7, 8e21 44719 . . . . 5 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
10 biimpr 220 . . . . . 6 ((𝜒𝜃) → (𝜃𝜒))
1110com12 32 . . . . 5 (𝜃 → ((𝜒𝜃) → 𝜒))
121, 9, 11e32 44747 . . . 4 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
1312in3 44599 . . 3 (   𝜑   ,   𝜓   ▶   (𝜃𝜒)   )
1413in2 44595 . 2 (   𝜑   ▶   (𝜓 → (𝜃𝜒))   )
1514in1 44561 1 (𝜑 → (𝜓 → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-vd1 44560  df-vd2 44568  df-vd3 44580
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator