Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exbiriVD Structured version   Visualization version   GIF version

Theorem exbiriVD 42363
Description: Virtual deduction proof of exbiri 807. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: ((𝜑𝜓) → (𝜒𝜃))
2:: (   𝜑   ▶   𝜑   )
3:: (   𝜑   ,   𝜓   ▶   𝜓   )
4:: (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   )
5:2,1,?: e10 42203 (   𝜑   ▶   (𝜓 → (𝜒𝜃))   )
6:3,5,?: e21 42239 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
7:4,6,?: e32 42267 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
8:7: (   𝜑   ,   𝜓   ▶   (𝜃𝜒)   )
9:8: (   𝜑   ▶   (𝜓 → (𝜃𝜒))   )
qed:9: (𝜑 → (𝜓 → (𝜃𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
exbiriVD.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
exbiriVD (𝜑 → (𝜓 → (𝜃𝜒)))

Proof of Theorem exbiriVD
StepHypRef Expression
1 idn3 42124 . . . . 5 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   )
2 idn2 42122 . . . . . 6 (   𝜑   ,   𝜓   ▶   𝜓   )
3 idn1 42083 . . . . . . 7 (   𝜑   ▶   𝜑   )
4 exbiriVD.1 . . . . . . 7 ((𝜑𝜓) → (𝜒𝜃))
5 pm3.3 448 . . . . . . . 8 (((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜒𝜃))))
65com12 32 . . . . . . 7 (𝜑 → (((𝜑𝜓) → (𝜒𝜃)) → (𝜓 → (𝜒𝜃))))
73, 4, 6e10 42203 . . . . . 6 (   𝜑   ▶   (𝜓 → (𝜒𝜃))   )
8 pm2.27 42 . . . . . 6 (𝜓 → ((𝜓 → (𝜒𝜃)) → (𝜒𝜃)))
92, 7, 8e21 42239 . . . . 5 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
10 biimpr 219 . . . . . 6 ((𝜒𝜃) → (𝜃𝜒))
1110com12 32 . . . . 5 (𝜃 → ((𝜒𝜃) → 𝜒))
121, 9, 11e32 42267 . . . 4 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
1312in3 42118 . . 3 (   𝜑   ,   𝜓   ▶   (𝜃𝜒)   )
1413in2 42114 . 2 (   𝜑   ▶   (𝜓 → (𝜃𝜒))   )
1514in1 42080 1 (𝜑 → (𝜓 → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-vd1 42079  df-vd2 42087  df-vd3 42099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator