Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exbiriVD Structured version   Visualization version   GIF version

Theorem exbiriVD 41926
Description: Virtual deduction proof of exbiri 811. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: ((𝜑𝜓) → (𝜒𝜃))
2:: (   𝜑   ▶   𝜑   )
3:: (   𝜑   ,   𝜓   ▶   𝜓   )
4:: (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   )
5:2,1,?: e10 41766 (   𝜑   ▶   (𝜓 → (𝜒𝜃))   )
6:3,5,?: e21 41802 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
7:4,6,?: e32 41830 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
8:7: (   𝜑   ,   𝜓   ▶   (𝜃𝜒)   )
9:8: (   𝜑   ▶   (𝜓 → (𝜃𝜒))   )
qed:9: (𝜑 → (𝜓 → (𝜃𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
exbiriVD.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
exbiriVD (𝜑 → (𝜓 → (𝜃𝜒)))

Proof of Theorem exbiriVD
StepHypRef Expression
1 idn3 41687 . . . . 5 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   )
2 idn2 41685 . . . . . 6 (   𝜑   ,   𝜓   ▶   𝜓   )
3 idn1 41646 . . . . . . 7 (   𝜑   ▶   𝜑   )
4 exbiriVD.1 . . . . . . 7 ((𝜑𝜓) → (𝜒𝜃))
5 pm3.3 453 . . . . . . . 8 (((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜒𝜃))))
65com12 32 . . . . . . 7 (𝜑 → (((𝜑𝜓) → (𝜒𝜃)) → (𝜓 → (𝜒𝜃))))
73, 4, 6e10 41766 . . . . . 6 (   𝜑   ▶   (𝜓 → (𝜒𝜃))   )
8 pm2.27 42 . . . . . 6 (𝜓 → ((𝜓 → (𝜒𝜃)) → (𝜒𝜃)))
92, 7, 8e21 41802 . . . . 5 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
10 biimpr 223 . . . . . 6 ((𝜒𝜃) → (𝜃𝜒))
1110com12 32 . . . . 5 (𝜃 → ((𝜒𝜃) → 𝜒))
121, 9, 11e32 41830 . . . 4 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
1312in3 41681 . . 3 (   𝜑   ,   𝜓   ▶   (𝜃𝜒)   )
1413in2 41677 . 2 (   𝜑   ▶   (𝜓 → (𝜃𝜒))   )
1514in1 41643 1 (𝜑 → (𝜓 → (𝜃𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 401  df-3an 1087  df-vd1 41642  df-vd2 41650  df-vd3 41662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator