| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exbiriVD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of exbiri 810. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
|
| Ref | Expression |
|---|---|
| exbiriVD.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| exbiriVD | ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn3 44640 | . . . . 5 ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜃 ) | |
| 2 | idn2 44638 | . . . . . 6 ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) | |
| 3 | idn1 44599 | . . . . . . 7 ⊢ ( 𝜑 ▶ 𝜑 ) | |
| 4 | exbiriVD.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) | |
| 5 | pm3.3 448 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜒 ↔ 𝜃)))) | |
| 6 | 5 | com12 32 | . . . . . . 7 ⊢ (𝜑 → (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜓 → (𝜒 ↔ 𝜃)))) |
| 7 | 3, 4, 6 | e10 44719 | . . . . . 6 ⊢ ( 𝜑 ▶ (𝜓 → (𝜒 ↔ 𝜃)) ) |
| 8 | pm2.27 42 | . . . . . 6 ⊢ (𝜓 → ((𝜓 → (𝜒 ↔ 𝜃)) → (𝜒 ↔ 𝜃))) | |
| 9 | 2, 7, 8 | e21 44754 | . . . . 5 ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 ↔ 𝜃) ) |
| 10 | biimpr 220 | . . . . . 6 ⊢ ((𝜒 ↔ 𝜃) → (𝜃 → 𝜒)) | |
| 11 | 10 | com12 32 | . . . . 5 ⊢ (𝜃 → ((𝜒 ↔ 𝜃) → 𝜒)) |
| 12 | 1, 9, 11 | e32 44782 | . . . 4 ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜒 ) |
| 13 | 12 | in3 44634 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ (𝜃 → 𝜒) ) |
| 14 | 13 | in2 44630 | . 2 ⊢ ( 𝜑 ▶ (𝜓 → (𝜃 → 𝜒)) ) |
| 15 | 14 | in1 44596 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-vd1 44595 df-vd2 44603 df-vd3 44615 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |