Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e323 Structured version   Visualization version   GIF version

Theorem e323 42275
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e323.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
e323.2 (   𝜑   ,   𝜓   ▶   𝜏   )
e323.3 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )
e323.4 (𝜃 → (𝜏 → (𝜂𝜁)))
Assertion
Ref Expression
e323 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜁   )

Proof of Theorem e323
StepHypRef Expression
1 e323.1 . . . 4 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
21dfvd3i 42101 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
3 e323.2 . . . 4 (   𝜑   ,   𝜓   ▶   𝜏   )
43dfvd2i 42094 . . 3 (𝜑 → (𝜓𝜏))
5 e323.3 . . . 4 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜂   )
65dfvd3i 42101 . . 3 (𝜑 → (𝜓 → (𝜒𝜂)))
7 e323.4 . . 3 (𝜃 → (𝜏 → (𝜂𝜁)))
82, 4, 6, 7ee323 42017 . 2 (𝜑 → (𝜓 → (𝜒𝜁)))
98dfvd3ir 42102 1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜁   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 42086  (   wvd3 42096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-vd2 42087  df-vd3 42099
This theorem is referenced by:  trintALTVD  42389
  Copyright terms: Public domain W3C validator