| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > e323 | Structured version Visualization version GIF version | ||
| Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| e323.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| e323.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) |
| e323.3 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) |
| e323.4 | ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) |
| Ref | Expression |
|---|---|
| e323 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e323.1 | . . . 4 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
| 2 | 1 | dfvd3i 44554 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | e323.2 | . . . 4 ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | |
| 4 | 3 | dfvd2i 44547 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| 5 | e323.3 | . . . 4 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜂 ) | |
| 6 | 5 | dfvd3i 44554 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) |
| 7 | e323.4 | . . 3 ⊢ (𝜃 → (𝜏 → (𝜂 → 𝜁))) | |
| 8 | 2, 4, 6, 7 | ee323 44470 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜁))) |
| 9 | 8 | dfvd3ir 44555 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜁 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44539 ( wvd3 44549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-vd2 44540 df-vd3 44552 |
| This theorem is referenced by: trintALTVD 44841 |
| Copyright terms: Public domain | W3C validator |