| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpnanrd | Structured version Visualization version GIF version | ||
| Description: Eliminate the right side of a negated conjunction in an implication. (Contributed by ML, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| mpnanrd.1 | ⊢ (𝜑 → 𝜓) |
| mpnanrd.2 | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpnanrd | ⊢ (𝜑 → ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpnanrd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpnanrd.2 | . . 3 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) | |
| 3 | imnan 399 | . . 3 ⊢ ((𝜓 → ¬ 𝜒) ↔ ¬ (𝜓 ∧ 𝜒)) | |
| 4 | 2, 3 | sylibr 234 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ecase2d 1032 mxidlirred 33500 fedgmullem2 33681 onsucuni3 37368 hashnexinj 42129 |
| Copyright terms: Public domain | W3C validator |