Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpnanrd | Structured version Visualization version GIF version |
Description: Eliminate the right side of a negated conjunction in an implication. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
mpnanrd.1 | ⊢ (𝜑 → 𝜓) |
mpnanrd.2 | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpnanrd | ⊢ (𝜑 → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpnanrd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpnanrd.2 | . . 3 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) | |
3 | imnan 399 | . . 3 ⊢ ((𝜓 → ¬ 𝜒) ↔ ¬ (𝜓 ∧ 𝜒)) | |
4 | 2, 3 | sylibr 233 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ecase2d 1026 fedgmullem2 31690 onsucuni3 35517 |
Copyright terms: Public domain | W3C validator |